
The moments of products of quadratic forms 
in normal variables * 

by JAN R. MAGNUS** 

Abstract The expectation of the product of an arbitrary number of quadratic forms in normally 
distributed variables is derived. 

1 Introduction 

Tests of certain statistical hypotheses require a test-statistic which is a quadratic 
form. Typically, these tests arise in statistical inference on variances. For instance, 
let X and s2 denote, respectively, the mean and the variance of a random sample 
xl, x2, . . ., x, from an arbitrary distribution. Then, 

is a quadratic form in x; The n-vector 1, consists of ones only. If the sample arises 
from a normal distribution N(p, a’), it is well-known that ns2/a2 is distributed 
~ ’ ( n -  1) regardless of the value of p, a property very useful in the construction of 
confidence intervals for 6’ when p is not known. 

As a second example, from econometrics, consider the linear regression model 

y = XB+E, 

where X is a nonstochastic (n, k)-matrix of rank k and E has a multivariate normal 
distribution N,(O, a2 V), while Y is a positive definite known (n, n)-matrix. Let 
/?= (X’V-’X)-’X’V-’y be the GLS-estimator for B, and e = y - X / ?  the vector of 
residuals. Then, 

is a quadratic form in E .  Moreover, the statistic (n-k)6”/a2 is distributed ~ ’ ( n - k ) .  
Both examples are special cases of the following result, due to OCASAWARA and 

TAKAHASHI [6]:*** 

Report AE4/78, Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam. 
** Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam. 

*** Even more general results are available, allowing for singular V. See RAO and MITRA [7, Theorem 
9.2.11. Note that condition (ii) in [7, p. 1711: “V(A,u+b) lies in the column space of YAY” can 
be replaced by the simpler expression: V ( A p  + 6 )  = V A  V ( A p  + b). 
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Lemma 1.1 

Let A be a symmetric (n, n)-matrix and x N N,@,  V ) ,  where V is positive definite 
(hence nonsingular). Necessary and sufficient that 

x'Ax + 2b'x + y 

follows a ~ ' ( k ,  6 )  distribution is that 

(bq) V ( A : b ) = ( ; ,  :), 
in which case 

k = R(A) ,  the rank of A, 

6 = p'Ap+2b'p+y.  

Moresver, the distribution is central if and only if Ap = - 6 .  

The above two examples justify the study of quadratic forms in normal variables. 
In some cases the product of two or more quadratic forms is of interest. NAGAR [4] 
derived the expectation of u'Au.u'Bu, A and B symmetric, and u - N,,(O, I ) .  NEU- 
DECKER [5] found the expectation of u'Au.u'Bu.u'Cu for arbitrary A ,  B, and C, while 
MAGNUS and NEUDECKER [3, theorem 4.21 simplified both proofs. 

The purpose of the present paper is to derive, for arbitrary s, the expectation of nf= I &'Aj&, where E - N,,(O, V )  and A , .  . . A ,  are symmetric. Note that this formula 
can be used to compute all the moments of a product of an arbitrary number of 
quadratic forms. For example, in NAGAR'S case, the variance of u'Au.u'Bu is easily 
determined from the formula. 

Throughout the paper u denotes the standardnormal n-vector, u - N,,(O, In), and E 

will be distributed as N,,(O, V ) ,  where Y is a positive definite (hence nonsingular) 
matrix of order n. Further A ,  and A , ,  A,, . . ., A, will denote real symmetric (n, n)- 
matrices, and A a real diagonal matrix. Of course, the symmetry assumption on A 
and A , .  . . A ,  is nor restrictive in the study of quadratic forms. 

The organization of this paper is as follows: In section two the moments of &'A& 
are derived. In  section three I introduce the concept of an A@)-polynomial. The next 
section states a result from the theory of homogeneous symmetric functions in s 
variables. In section five the previous results are applied to prove the main result, 
i.e. to derive the expectation of n:=, &'Aj&. The final section gives some applications. 

2 The moments of e'Ae 

If the s-th moment of a random variable x exists, then its characteristic function q(t) 
can be expanded in a neighborhood of t = 0 as follows: 
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where 

and 
ah = E(Xh), the h-th moment of x, 

If cp(t) can be expanded as in (2 .  I ) ,  then log q(t) may be expanded as 

The quantities Kh are called the cumulants (or semi-invariants) of the distribution of x. 
See CRAMBR [ I ,  p. 185-1871. Note that any  cumulant K~ is a polynomial in the 
moments a I ,  a z ,  . . ., a h ,  and vice versa. 

Lemma 2.1 

The cumulants K h ( h  = 1, 2,  . . .) of the distribution of u’Au, where u - N,,(O, I )  and A 
is diagonal, are 

= ~ I ~ 2 h - 1 ( h  - I ) !  = 2h- ‘ ( h  - l ) !  tr Ah. 
i 

The second equality follows from the independence of the u:. (CRAMER [ I ,  p. 1921). 
The third equality also follows from [ I ,  p. 1871. In  the fourth equality I simply 
substitute the cumulants of the ~ ~ ( 1 )  distribution [ I ,  p. 2341. 

Lemma 2.2 

The s-th moment a, = E(u’Au)” (s = I ,  2 ,  ...) is a known polynomial in K ~ ,  ..., K, 

(see e.g. KENDALL and STUART [2, p. 691 for the first ten moments in terms of 
K~ .. . K ~ ~ ) .  In particular we have 

a1 = tr A,  

a2 = ( t r n j 2 + 2 t r n z ,  

m3 = (tr A ) 3  +6(tr A)(tr AZ)+8tr A’, 

a4 = (trA)4+32(trA)(trA3)+ 12(trA2)’+ 12(trA)2(trA2)+48trA4 
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Lemma 2.3 

The s-th moment of E'AE, where E - NJO, V), is obtained from a, (Lemma 2.2) by 
substituting A V for A. For example, 

EE'AE = trAV, 

E(E'AE)' = (tr A V)'+ 2tr (AV)' ,  etc. 

Proof 

Since V is positive definite, there exists a unique, positive definite and symmetric 
matrix Vf such that V*V* = V. Let T be an orthogonal matrix such that 

T'V*AV*T = A ,  

where A is a diagonal matrix containing the eigenvalues of V*AVi on its diagonal. 
Then, 

Hence, 

and 

. &'A& = (&'V-*T)(T'V'AV'T)(T'Y-'E) = u'Au. 

E(E'AE)S = E(u'Au)", 

trAh = tr(T'VfAVfT)* = tr(AV)h. 

3 A@)-forms and A@)-polynomials 

Consider now s real symmetric matrices A, ,  A,, ..., A,. Before focusing on the 
expectation of n3=I (u'A,u), where u - N,(O, I ) ,  I shall need some definitions that 
will prove useful in section five. 

Definition 3. I (A(s)-form) 

Divide the index set { I ,  2, . . ., s} into mutually exclusive and exhaustive subsets. 
Within each subset, take the trace of the matrix product of the A,'s corresponding 
with indices from this subset. The product of all these traces will be called an 
A@)-form. 
Examples of A(3)-forms : 

Definition 3.2 (similarity class) 

Two A@)-forms belong to the same similarity class iff their corresponding subsets (see 
definition 3.1) differ only by a permutation of indices. 
Examples: tr (A,) tr (A,A,)  is equal to tr (A3AZ) tr A,, but not necessarily equal to 
tr (A2) tr (A, A3) or tr (A3) tr (A,A, ) .  However, all four A(3)-forms belong to the 
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same similarity class. On the other hand, tr ( A , A , A , )  belongs to a different similarity 
class. 

Definition 3.3 (A(s)-sum) 

The sum of all non-equal A($-forms within a similarity class is called an A(s)-sum. 
Examples: The three A(3)-sums are: tr ( A , A , A , ) ,  (tr A , )  (tr A 2 )  (tr A 3 ) ,  and 
[(tr tr(A2A3)+(tr tr(A1A3)+(tr A 3 )  tr(A1A2)1* 

Definition 3.4 (A(s)-polynomial) 

Any linear combination of A(s)-sums is called an A(s)-polynomial. 
Examples: The A@)-polynomials will play a crucial part in the remainder of this 
paper. Therefore I give the A(2)-, A(3)-, and A(4)-polynomials as examples : 

4 2 )  : v (tr A ) (tr A 2 )  + v2 tr (A A ,), 

4 ALemma 

Before the theorem in the next section can be proved, I need one further result. It 
concerns a decomposition of a product of real variables into a polynomial of sums, 
and it may prove useful in other applications as well. 

Let a, b, and c be real variables. It is easy to verify that 

2ab = (a  + b) ,  - (a2 + bZ), 
and 

6abc = (a+ b + c ) ,  - [(a+ b) ,  + (a+  c), + ( b +  c)’]+(u’ + b3 + c’). 

This suggests the following 

Lemma 4.1 

Let x l ,  x,, . . . be real variables. Then, for s = 2, 3, . . . 
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Proof 

Denote the r.h.s. of (4.1) as cp(x,, x2, . . ., xs). 1 wish t o  prove that  cp(x,, x2, . . ., x,) = 
s! fl:= I x j .  Suppose that x, = 0 implies cp(x,, x2, . . ., x,) = 0. Then, by symmetry, the 
same is true for xI, x2, . . ., x,- ,, and hence 

5 

cp(x,,x,, ..., x,) = c fl Xj '  
j= 1 

where C is a constant. Now, the only term in cp(x,, x2, ..., xs) which yields n,x j  is 
(Ljxj)'. Hence, the coefficient of n j x j  must be s!. The only thing to  be shown, then, 
is that x, = 0 implies 'p(x,, x2, . . ., xs) = 0. 

Define the function cpr'(.) in s- 1 variables as  

, . - I  \ e  

The following properties of cpy'( .) are readily verified : 

(&'(.) = & - I )  ( . ) + c p f - - / ) ( . ) ,  k = 1,2 ,...) s - 2 ,  

k = O , l ,  ..., S- 1 i(4.2) 
T = S - l , S .  

Hence, using the definition (4.2) and the properties (4.3), (4.4), and (4 .9 ,  

This concludes the proof. 

(4.3) 

(4.4) 

(4.5) 

S 

5 The expectation of fl ~ A , E  

The main result then is the following: 

j =  1 
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Theorem 5.1 

Let A , ,  Az ,  .. ., A, be real symmetric (n, n)-matrices, u - N,(O, I), and E - NJO, V), 
V positive definite. Then, 

1 

E n u’Aju is an A(s)-polynomial, 
j =  1 

and 
S 

E n &‘Aj& is the same A(s)-polynomial with each A, replaced 
j= 1 

by AiV. 

Proof 
Put xi = u‘Aju in lemma 4.1 and take expectations. This gives 

Note that (5.1) holds generally, not only for normally distributed u. Also note that 
(5.1) in conjunction with lemma 2.3 shows that the expectation of fl;=lu’Aju is a 
sum of terms, each of which is either an A(s)-form (see definition 3.1) or has the same 
structure as an &)-form but differs from it in that at  least one of the indices appears 
more than once. Such a form I will call an R(s)-form. Thus, the index set correspond- 
ing to the s matrices in the R(s)-form is a proper subset of { 1,2, . . ., s}. Examples of 
4 3 ) -  and R(3)-forms are: 
4 3 ) :  (tr A tr(AzA3), (tr A 1) 

~ ( 3 ) :  ( t r ~ ~ ) t r ( ~ , ~ , ) ,  (trA,)(trA,)’, tr A:.  
Now, by symmetry, the sum of all the A(s)-forms in E nf= u’Aju is an A(s)-poly- 
nomial. Hence, I may write 

4) (tr A3), tr ( A  lAzA3);  

E n u’Aju = A(s)+ R(s),  
j =  1 

where A(s) is the A@)-polynomial and R(s) contains the R(s)-forms. Further, 
E n ; =  u’Aju is homogeneous in the A j  ( j  = 1.. .s), since, for all I. 

Similarly, A(s) is homogeneous in the A j .  Hence, R(s) is homogeneous in the A j .  But 
this can only be if R(s) 2 0. This concludes the first part of the theorem. 

To prove the second part, write 

I 8 I 

E fl &‘Aj& = E n u‘V’AjVfu = E n u’Aju, 
j =  1 j =  1 j= I 
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where Aj = V*A,V*. Then, subsituting lj in the A(s)-polynomial and observing that 
tr (V*A V* V*A, V*) = tr (A VA, V )  concludes the proof. 

REMARK 

The required expectation is found as follows : First write down the A(s)-polynomial, 
then put A ,  = A, = . . . = A,, and use the known coefficients of E(u’Au)l [see lemma 
2.31 to determine the coefficients of the A($-polynomial. For example, the coefficients 
in the A(2)-, A(3)-, and A(4)-polynomials given under definition 3.4 are 
A(2): v ,  = 1, v2 = 2, 
A(3): V ,  = 1, v2 = 2, v3 = 8, 
A(4): ~ , = 1 ,  ~ , = 8 ,  ~ 3 = 4 ,  v4=2,  v5=16.  

6 Some applications: skewness and kurtosis 

Let me now give a few examples. Let x be a stochastic variable, Ex = p, E(x-p)’ = u2.  
Clearly, p and u2 are measures of location and dispersion. The ratio of the third 
moment around the mean to the third power of the standard deviation, 

is often used as a measure for the degree of nonsymmetry (skewness) of a distribution. 
For distributions with a long tail in positive direction it takes positive values; for 
those with a long tail in the opposite direction it takes a negative value. If the distribu- 
tion is symmetrical, /3 vanishes. The opposite, however, is not true, so the value of 
must be interpreted with some caution. Another statistic is 

y = 0-~E(x-p)~-3 ,  (6.2) 

which is used as a measure of the degree of flattening of a frequency curve near its 
centre (kurtosis). Its value is usually positive when the distribution has long thick 
tails and sharp peaks relative to the normal distribution. Note that for the normal 
distribution, B =  y = 0. 

Lemma 6.1 

Let A be a symmetric matrix, and E - N,(O, V ) ,  Y positive definite. Define y = &’A&. 
The expectation, variance, skewness, and kurtosis of y are: 

208 



Proof 

It follows from lemma 2.3 that p = Ey = tr AV, E ( ~ - P ) ~  = 2tr ( A  V ) 2 ,  EQ-p)’ = 
8tr(A Q3, and E ( ~ - P ) ~  = 48tr ( A  V)4 + 12(tr ( A  V ) 2 ) 2 .  Hence, by definitions (6.1) 
and (6.2) the result follows. 

Notice that the kurtosis y(y) is always positive which indicates that the frequency 
curve of E’AE is likely to be more tall and slim than the normal curve in the neighbor- 
hood of the mode. 

Similar results can be found in NAGAR’S case, i.e. for the product of two quadratic 
forms. The formulae, however, are more complicated. 

Lemma 6.2 

Let A and B be symmetric matrices, and E - N,(O, V ) ,  Y positive definite. Define 
z = E’AE-&’BE. The expectation and variance of z are: 

p(z) = (trAV)(trBV)+2tr(AVBV), 

02(z) = 32tr [(AV)’(BV)’]+ 16[tr(AVBV)2+(trA V)(trAV(BV)2) 

+(tr BV)(tr (A Q2BV)] +4[tr (AV)’ tr (BV)’ + (tr A YBV)’ 

+ ( trAV)(tr  BV)(tr A VBV)]  +2[(tr A V ) 2  tr(BV)2 +(tr B V ) 2  tr ( A  V ) 2 ] .  

Proof 

Let u - N,(O, I). Applying the formulae under definition 3.4 (with the known coeffi- 
cients given in the remark under Theorem 5. l ) ,  it is easily seen that 

Eu’Au.u’Bu = (trA)(trB)+2tr(AB) 

E(u’Au.u’Bu)~ = (tr A)’(tr B ) 2  + 16[(trA)(trAB2)+(tr B)(tr A ’ B ) ]  

+4[(tr A 2 )  (tr B2)+2(tr AB)’]+2[(tr A)’(tr B 2 )  

+4(tr A)  (tr B)(tr AB)+(tr B)2(tr A2)] + 1 6 [ ~ ( . 4 B ) ~  

+2(tr A2B2)] .  

and 

Hence, the variance of u’Au*u’Bu is 

u2(u’Au.u’Bu) = E(u’Au.u’Bu)~ - [E(u’Au.u’Bu)12 = 32 tr(A2B2) 

+ 16[tr(AB)’+(tr A)(tr AB2)+(tr B)(tr A2B)]  

+4[(tr A2)(tr B 2 )  +(tr AB)’+(tr A)(tr B)(tr A B ) ]  

+ 2 [ ( t r ~ ) ~ ( t r  B2)+(tr ~ ) ’ ( t r ~ ~ ) ] .  

Substituting AV for A,  and BV for B gives the desired results. 
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