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THE ELIMINATION MATRIX: SOME LEMMAS AND
APPLICATIONS*

JAN R. MAGNUS AND H. NEUDECKER*

Abstract. Two transformation matrices are introduced, L and D, which contain zero and unit elements
only. If A is an arbitrary (n, n) matrix, L eliminates from vecA the supradiagonal elements of A, while D
performs the inverse transformation for symmetric A. Many properties of L and D are derived, in particular
in relation to Kronecker products. The usefulness of the two matrices is demonstrated in three areas of
mathematical statistics and matrix algebra: maximum likelihood estimation of the multivariate normal
distribution, the evaluation of Jacobians of transformations with symmetric or lower triangular matrix
arguments, and the solution of matrix equations.

1. Introduction. If a matrix A has a known structure (symmetric, skew symmetric,
diagonal, triangular), some elements of .4 are redundant in the sense that they can be
deduced from this structure. Thus, if A is a symmetric or lower triangular matrix of
order n, its n(n-1) supradiagonal elements are redundant. If we eliminate these
elements from vecA (the column vector stacking the columns of A), this defines a new
vector of order n(n+ 1) which we denote as v(A). The matrix which, for arbitrary A,
transforms vecA into v(A) is the elimination matrix L, first mentioned by Tracy and
Singh (1972) and later by Vetter (1975) and Balestra (1976).

Of equal interest is the inverse transformation from v(A) to vecA. For lower
triangular A, we shall see that L’v(A)fvecA. We further introduce the duplication
matrix D such that, for symmetric A, Dv(A)=vecA. The matrix D (or a matrix
comparable to D) was previously defined by Tracy and Singh (1972), Browne (1974),
Vetter (1975), Balestra (1976), and Nel (1978). D +, the MooreoPenrose inverse of D,
possesses the property, used by Browne (1974) and Nel (1978), D +vecA v(A), for
symmetric A.

The purpose of this paper is to study the matrices L and D. Both matrices consist
of zero and unit elements only. 2 gives the necessary definitions and basic tools. The
next two sections contain the theoretical heart of the paper and establish a number of
results on L and D. 5-7 are devoted to applications: maximum likelihood estima-
tion of the multivariate normal distribution, the evaluation of Jacobians of transfor-
mations with symmetric or lower triangular matrix arguments, and, finally, the
solution of matrix equations. An appendix presents the proofs of the lemmas in 4.

Not all results are new. Thus, Tracy and Singh (1972) established that ]L(A(R)
A)D[= ]AI +1. They obtained two other determinants as well (their examples 5.3 and
5.4), but these are both in error. Browne (1974) proved the important fact that
(D’(A(R)A)D)- =D +(A-(R)A-)D +’ for nonsingular A, while Nel (1978) evaluated
the determinant of D+(A(R)B)D, when ABffiBA, A and B symmetric. Concurrently
with the present paper, Henderson and Searle (1979) wrote an article on the same
topic. Inevitably there is some overlap between the two papers.

2. Notation and preliminary results. All matrices are real; capital letters represent
matrices; lowercase letters denote vectors or scalars. An (m, n) matrix is one having m
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rows and n columns; A’ denotes the__transpose of A, trA its trace, and [AI its
determinant. If A is a square matrix, A denotes the lower triangular matrix derived
from A by setting all supradiagonal elements in A equal to zero; dg(A) is the diagonal
matrix derived from A by setting all supra- and infradiagonal elements in A equal to
zero. If x is an n-vector, and f(x)=(f(x).. "fm(X))’ a differentiable vector function
of x, then the matrix Of/Ox has order (n, m) with typical element (Of/Ox).

The unit vector ei, i= 1,..., n, is the ith column of the identity matrix I,, i.e., it is
an n-vector with one in its th position and zeroes elsewhere. The (n, n) matrix Ej has
one in its 0"th position and zeroes elsewhere, i.e., Ej =eej. We partition the identity

n(n + 1) as follows"matrix of order

I(l/2)n(n+l)-’(ulIH21 UnlU22"’" Un2U33"’" Unn ).

n(n+ 1) with unity in its [(j-1)n+iFormally, u2 is a unit vector of order-- j(j- l)]-th position and zeroes elsewhere (1 <__j<__i<-n).
If A is an (m, n) matrix and A its jth column, then vecA is the ran-column

vector

/t.

vecA

n(n + 1) vector that is obtained fromIf A is square of order n, v(A) denotes the
vecA by eliminating all supradiagonal elements of A. For example, if n---3,

vecA (alia21a31a12a22a32a13a23a33
and

v(A) (a,a2a3a22a32a33 )’.
Finally, the Kronecker product of an (m, n) matrix A (aj) and an (s, t) matrix

B is the (ms, nt) matrix

A(R)B--(aijB ).
This settles the notation. Let us now state some prelimina_ry results that will be

used throughout. If A--(aij) is an (n, n) matrix, then A, A, and dg(A) can be
expressed as

(2.1) A= E aijEij; Y= . ai2Eij; dg(A)= aiiEii
ij ij i-----1

A standard result on vecs is

(2.2) vecABC-- (C’ (R)A )vecB,
if the matrix product ABC exists. For vectors x and y of any order we then have

(2.3) x(R)y=vecyx’ and x(R)y’ =xy’ =y’(R)x.

The basic connection between the vec-function and the trace is

(2.4) (vecA)’vecB trA’B,

where A and B are (m, n) matrices. From (2.2) and (2.4) follows

(2.5) (vecA)’(B (R) C)vecD trA’CDB’,

if the expression on the right-hand side exists.
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We shall frequently use the commutation matrix K defined implicitly as"

DEHNTION 2.1a (implicit definition of K). The (n2, n2) commutation matrix K
performs for every (n, n) matrix A the transformation KvecA =vecA’.

In fact, K is a special case of the (mn, mn) matrix Kmn which maps vecA into
vecA’ for an arbitrary (m, n) matrix A. The matrix K, was introduced by Tracy and
Dwyer (1969). Many of its properties are derived in Magnus and Neudecker (1979),
who also established the following explicit expression for K.

DEFINITION 2.1b (explicit definition of K).

i==lj-----1

Closely related to the commutation matrix is the matrix N.
DEFINITION 2.2a (implicit definition of N). The (n2, n2) matrix N performs for

every (n, n) matrix A the transformation NvecA =vec1/2(A + A’).
Its explicit expression is immediately derived.
DEFICTION 2.2b (explicit definition of N).

N--1/2(I+K).
Note that the implicit definitions of K and N are proper definitions in the sense

that they uniquely determine K and N. The following lemma gives some properties of
K and N.

LEt_A 2.1.
(i) K--K’--K -"
(ii) K(A (R) B) (B(R)A)K, for any (n, n) matrices A and B;
(iii) N N’ N2;
(iv) NK=N KN.

For any (n, n) matrix A we have
(v) N(A (R)A)--- (A (R)A)N=N(A (R)A)N;
(vi) N(I(R)A +A (R)I)=(I(R)A +A (R)I)N=N(I(R)A +A (R)I)N

2N(I(R)A )N-- 2N(A (R)I)N.
Proof. The properties of K follow from Magnus and Neudecker (1979). The

properties of N follow from those of K since N

Let us now give four results on the unit vector u of order n(n + l) and the v(.)
operator.

(2.6) , UijUj I(1/2>n(,+ 1)"
i>=j

If A is an (n, n) matrix, then

(2.7) v(A)=v(Y)= aijuj and v(dg(A))=

(2.8) uij=v(Eij ) and aij=ujv(A ), i>__j;

(2.9) v(A) v(dg(A)), if A is upper triangular.

Finally, we make use of the following standard facts in matrix differentiation.
For every matrix X and Y of appropriate orders,

(2.1O) d(XY) (dX) Y+X(dY),
(2.11) dtrXr= tr(dX)Y+ trXdr.
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For every nonsingular X,

(2.12) dlog X trX ldX,

dX X l(dX )X 1.

3. Basic properties of L and D. Let us now introduce the elimination matrix L. As
in the previous section, where we defined K and N, the elimination matrix will be
defined implicitly and explicitly.

DEFINITION 3.1a (implicit definition of L). The (1/2 n(n+ 1), n2) elimination matrix
L performs for every (n, n) matrix A the transformation LvecA---v(A).

L, thus defined, eliminates from vecA the supradiagonal elements of A. We shall
show that L is.uniquely determined by (3. a). Let A be an arbi.trary (n, n) matrix, and
suppose that L and L both transform vecA into v(A). Then (L-L)vecA =0 for every
A. Hence, L= L. We can derive an explicit expression for L as follows. Recall that ei,

i= 1.-- n, is the th unit vector of order n. Then, using (2.7), (2.4), and (2.3), we find

v(A ) i>jaijuij i>juij( e:Aej) E uijtr( eje;A )

Z uijtr(EiA) Z uij(vec Eij)’vecA Z(uij@ej(e;)vecA.
ij ij i>j"

This leads to the following explicit definition.
DEFINITION 3.1b (explicit definition of L).

L= E uij(vecEij)’= . (uij(R)e(R)e;).
i>=j ij

An example, for n= 3, is

0
0

0 0
0

0

0 0
0 0

0 0 0 0

Most authors on (0,1) matrices are interested only in transformations with
symmetric matrices, and work with LN rather than L. See, e.g., Browne (1974) and Nel
(1978). The justification for this lies in the following lemma.

LEMMA 3.1. For any (n, n) matrix A we have

(i) LNvecA - v(A +A’)

In particular, when A is symmetric,

(ii) LNvecA =v(A).

Proof. Immediate from the implicit definitions of N and L.

Thus, if A is symmetric, L and LN play the same role. In this paper we have
chosen a more general approach, based on LvecA =v(A) for arbitrary A, largely
because this allows us to study transformations with triangular matrices as well. The
following lemma characterizes L as a (0, 1) matrix with i n(n + 1) l’s, one in each row
and not more than one in each column.
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LMMA 3.2.
n(n+ 1)"(i) L has full row-rank

(ii) LL’ I/2)+ O;
(iii) L + L’, where L+ is the Moore-Penrose generalized inverse of L.
Proof. We shall show that LL’--I. The other two results then follow directly.

LL’= X (uijeje;) Z (U’hkekeh)= X (uijukejeke;eh)
ij hk ij hk

ijj ](1/2)n(n+ 1), by (2.6).
ij

Let us now determine three matrices that are useful for certain linear transfoations.
LM 3.3. The matrices L’L, LKL’, and L’LKL’L are diagonala ideotent of

rank n(n+ 1), n, and n respectively. t A be an arbitra (n, n) trix. Then,

(i) L’LvecA vecA;
(ii) L’L= (E@Eii);
(iii) LKL’v(A) v(dg(A));

(iv) LKL’= iii;
iffil

(v) L’LKL’LvecA vec(dg(A));

(vi) L’LKL’L (EiiEii ).
il

Proof. By the explicit definition of L wc have

L’L= (ujejei) (Uhkee)= (ujuhkejeeie)
ij hk ij hk

(ejeeie)= (EjjEii),
ij ij

so that, using (2.2) and (2.1),

L’ w a (
ij ij

vec ( eieAeje ) vec aijEij
ij ij

Further, for arbitra v(A),

aiiii iiiv(A),

by (i), the implicit definitions of K and L, (2.9), (2.7) and (2.8). is proves (i) and
(iv). Silarly, for arbitra vecA,

L’LKL’LvecA L’v(dg(A )) vec(dg(A)) vec (auEu )

=vec (eieAeie)= vec(EiiAEii) ( EiiEii)vecA

by (iii), (i), (2.1) and (2.2). It is easy to see that the tee matrices are diagonal with
only zeroes and ones on the diagonal. Hence they are idempotent. era of each of
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n(n+ 1), n and nthe three matrices equals the number of ones on the diagonal, i.e.,
respectively. [-]

Note that Lemma 3.3(i) implies that L’LvecA =vecA if and only if A is lower
triangular. The matrix LKL’, as shown in the previous lemma, is diagonal with n ones
and n(n- 1) zeroes. Hence, I+ LKL’ is a nonsingular diagonal matrix with n times 2

L(I + K)L’and n(n- l) times on the diagonal. Because LNL’ =
n(n 1) times1/2(LL’ + LKL’) 1/2(I+ LKL’), it is diagonal too with n times and

on the diagonal. The following properties of LNL’ are of interest.
LEMMA 3.4. The matrix LNL’ is diagonal with determinant
(i) LNL’I 2-(1/2)n(n-1).

Its inverse is

(ii) ( LNL’)- 2I- LKL’.
Proof. Since LNL’ is a diagonal matrix, its determinant is the product of its

diagonal elements, i.e., ]LNL’ --2 -(l/2)n(n-D. Property (ii) is easily established using
LNL’ 1(1+ LKL’) and the idempotency of LKL’. [-]

As we have seen, L uniquely transforms vecA into v(A). The inverse transforma-
tion generally does not exist. We can, however, easily transform v(A) into (the vecs
of) a lower triangular matrix or a diagonal matrix, since

L’v(A)=vecA (Definition 3.1a and Lemma 3.3 (i)),
and

L’LKL’v(A)=vecdg(A) (Definition 3.1a and Lemma 3.3(v)).
Combining these two transformations one verifies that

( L’ + KL’- L’LKL’)v(A)=vec(Y+’-dg(A)).

We have thus found a matrix which transforms v(A) into (the vee of) a symmetric
matrix. Let us define this matrix implicitly.

n(n/ 1)) duplication matrixDEFINITION 3.2a (implicit definition of D). The (n2,
D performs for every (n, n) matrix A the transformation Dv(A) vec(A +’ dg(A)).

It is easy to see that D is unique. Hence, D= L’+KL’-L’LKL’ =2NL’-L’LKL’.
Note that in particular, if A is symmetric, DLvecA=Dv(A)=vecA. This is an
important property that we will frequently use. The converse is also true; i.e., any A
satisfying DLvecA vecA is symmetric.

LEMMA 3.5.
(i) LD IOI2)n(n+ );
(ii) OLN-- N;
(iii) D-- 2NL’ L’LKL’ NL’(LNL’)- .
Proof. Let A--A’; then LDv(A)=LvecA=v(A). Hence, LD--I, since the sym-

metry of A does not restrict v(A). Further, for arbitrary A,

DLNvecA=DLvec1/2(A +A’)--Dv(1/2(A +A’))---vec1/2(A +A’)--NvecA,
which proves (ii). It also implies that DLNL’ =NL’, and because of the nonsingularity
of LNL’, D NL’(LNL’)- . [-I

Note that DLN=N is a defining property of D. In fact, it is just a reformulation
of Definition 3.2a. The matrix D can be explicitly expressed in terms of unit vectors of
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order i n(n + 1) and n, i.e., in terms of uij, ei, and ej. From the explicit definition of K
and L, and the expression for L’L (Lemma 3.3 (ii)), one verifies that

and

so that

Z,K--

LKL’L-- E Uu(vecEu)’,

D’ L+LK-LKL’L

E uij(vecEij)’+ E uij(vecEji)’- E Uu(vecEi,)’.
ij ij

Hence, we may define D as follows.
DFINITION 3.2b (explicit definition of D). Let T/j be an (n, n) matrix with in its

0"th and jith position, and zeroes elsewhere. Then

o’= Z
Note that Tj Ej + Ej for i4:j, and that Tu Eu. An example, for n= 3, is

0 0
0 0
0 0

0 0
0 0 0
0 0 0

0 0
0
0 0

Further properties of D are contained in the following two lemmas.
LEMtA 3.6.

(n+ 1);(i) D has full column-rank n
(ii) KD D ND;
(iii) D’O (LNL’)
(iv) D + LN.
Proof. Straightforward from the expression D=NL’(LNL’)- and the properties

DLN N N2 KN, and LD I.

LEMMA 3.7. Let A be an arbitrary (n, n) matrix. Then,
(i) D’vecA =v(A +A’-dg(A));
(ii) DD"vecA =vec(A +A’-dg(A));
(iii) DD’ 2N- L’LKL’L.
Proof. From Lemmas 3.3(iii) and (v), and 3.5(iii), and Definitions 2.1a, 2.2b, 3.1a,

and 3.2a, we have

D’vecA (L +LK-LKL’L)vecA v(A) + v(A’) v(dg(A)),



THE ELIMINATION MATRIX 429

and

DD’vecA =Dv(A +A’-dg(A))=vec(A +A’- dg(A))
(I+K)vecA L’LKL’LvecA (2N- L’LKL’L)vecA,

for an arbitrary (n, n) matrix A. Hence, DD’ =2N-L’LKL’L.

The matrices L and D, like the commutation matrix K, are useful in matrix
differentiation. From Definition 2.1a, it follows that vecX/vecX’=K where X is an
(n, n) matrix. The corresponding results for L and D are contained in the following
lemma.

LEMMA 3.8. Let X be an ( n, n) matrix. Then
[ L, for lower triangular X;

(i) vecX/v(X)= D’, for symmetric X;
(ii) Ov(X)/OvecX L’.
Proof. Immediate from the relations vecX= L’v(X) (lower triangular X), vecX=

Dv(X) (symmetric X), and v(X)=LvecX. [-]

Comment. More general results are easily obtained from Lemma 3.8, using the
chain rule. In particular, let Y=F(x) be an (n, n) matrix whose elements are
differentiable functions of a vector x. Then

( Ov(Y)/Ox)L if Y is lower triangular for all x;
(i) vecY/19x

()v(r)/Ox)D’ if Y is symmetric for all x;
(ii) Ov(Y)/Ox--(OvecY/Ox)L’ for all Y.

4. Applications to Kronecker products. From 2 we know that the commutation
matrix K possesses two major properties: a transformation property, KvecA =vecA’
(its definition), and a Kronecker property, K(A (R)B)K=B(R)A. The elimination matrix
L and the duplication matrix D have likewise been defined by their transformation
properties, viz. LvecA=v(A) and, for symmetric A, Dv(A)=vecA. Let us now
investigate their Kronecker properties. The applications in 5-7 are based almost
entirely on the lemmas in the present section. Proofs are postponed to the Appendix.

We shall first show that, if A and B have a certain structure (diagonal, triangular),
Kronecker forms of the type L(A (R)B)L’ and L(A (R)B)D often possess the same
structure.

LEMM 4.1. Let A and M be diagonal n-matrices with diagonal elements i and #g
( 1... n). Letfurther P and Q be lower triangular n-matrices with diagonal elements Pii
and qii, i= 1... n. Then,

(i) L(A(R)M)L’ =L(A(R)M)D is diagonal with elements tikj(i__.J") and determi-
nant IIitii-i+ 1.

(ii) L(P(R) Q)L’ is lower triangular with diagonal elements qgiPjj(i >-) and determi-
n--i+l.nant IIiqiiPii

(iii) L(P(R)Q)D is lower triangular and L(P’(R)Q’)D is upper triangular. Both
matrices have diagonal elements qiipjj(i>=j") and determinant _i _n-i+

HiqiiPii
Next we establish some properties of L(P’(R) Q)L’, with lower triangular P and Q.

Notice that (i) is the Kronecker counterpart of the property L’LvecP--vecP for lower
triangular P.

LEMM 4.2. For lower triangular n-matrices P (Pij) and Q= (qij),
(i) L’L(P’(R)Q)L’=(P’(R)Q)L’;
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(ii)
1,2,- ,

[L(p,(R))L,I,L[(p,),(R)Q,IL, s ,-2,- 1, ifP -1 and Q-1 exist,

s--g, if lower triangular pl/2 and Ol/ exist;

(iii) L(P’(R)Q)L’=D’(P’(R)Q)L’ has eigenvalues qiiPjj (i>=J) and determinant
_i _n--i+

i1iiPii
In Lemma 4.1 we have proved that, for lower triangular P and Q, the matrices

L(P(R)Q)L’, L(P(R)Q)D, L(P’(R)Q’)L’, and L(P’(R)Q’)D are triangular as well, with
diagonal elements qiiP22, i>=J Although the matrices L(P’(R)Q)L’, L(P(R)Q’)L’, and
L(P(R)Q’)D are not triangular, they also possess eigenvalues q,P22, i>=J; see Lemma
4.2. The matrix L(P’(R)Q)D is more complicated and seems not to have such nice
properties. In particular, its eigenvalues are in general different from q,P22, i>-

The results of Lemmas 4.1 and 4.2 enable us to find the following determinants
which are of importance in the evaluation of Jacobians of transformations with lower
triangular matrix arguments (see 6).

LEMMA 4.3. For lower triangular n-matrices P, Q, R, and S with diagonal elements
p,, q,, r,, and sii, i= 1.-. n, we have

(i) IL(PQ’(R)R’S)L’ -’IXi(riisii)i(Piiqii)n-i+ 1;
(ii) [L(P’(R)Q+ R’(R)S)L’I-IIi> j(qiiPjj +siiGj);
(iii) IL(P(R)Q’R)DI-- IIi(-qiirii) tlii
(iv) IL(PQ’(R)R’)DI ---IIiriii(Piiqii)n-i+ 1.

If P, Q, R, S are nonsingular,
(v) [L(PQ’(R)R’S)L’]-=L(Q’-(R)S-)L’L(P-(R)R’-)L’.

Finally,
H

(vi) IL [(P’)n-h(R)Ph-]L’IfHnIPIH-IIi>jlXi2 H=2,3,---,
h=l

where
(pi , -e 7)

IJ’ij (Pii --Pjj)
ifpii 51=PJJ’

H-InPii ifPii-’Pjj.
A variety of corollaries flow from Lemma 4.3 by putting one or more of the

LEMMA 4.4. For any (n, n) matrix A,
(i) DL(A (R)A)D--’(A (R)A)D;

(ii) [L(AA)D]" =L(AS(R)AS)D, ifA exists,

ifA1/2 exists;

matrices P, Q, R, and S equal to I. Also, the four matrices L(PQ’(R)Q’P)L’,
L(PQ’(R)P’Q)L’, L(PQ(R)Q’P)D, and L(PQ’(R)P’Q’)D have the same determinant,
namely el/ Ol/.

In Lemmas 4.1-4.3 we have studied triangular matrices only. The crucial
properties for lower triangular matrices are L’LvecP=vecP and its Kronecker coun-
terpart L’L(P’(R)Q)L’--(P’(R)Q)L’, which enable us to discover further properties of
the important matrix L(P’(R)Q)L’. Let us now turn away from triangular matrices.
An equally important property is DLvecA =vecA for symmetric A. Its Kronecker
counterpart is DL(A (R)A)D=(A (R)A)D for arbitrary A, as we shall see shortly, and it
enables us to study the matrix L(A (R)A)D.
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(iii) The eigenvalues of L(A(R)A)D are XiXj, i>-, when A has eigenvalues
Xi(i=l...n);

(iv) Iz(a(R)a)Ol--Ial"+;
(v)

IfA is nonsingular,
(vi) [D’(A (R)A)D] LN(A-@A- )NL’.

IfAB BA, and A and B have eigenvalues h and lzi, i-- 1... n,
(vii) [D’(A (R)B)D[-- IA[ IBIIIi>j(AiIj -I-ji).
Note that in (vii) we do not require A and B to be symmetric, in contrast to Nel

(1978). In applying (vii) one must be careful to note that knowledge of h and/1 is not
sufficient in order to compute IIi>j(,dj +hjlxi). In general, it is necessary to carry
out the simultaneous reduction of A and B to diagonal form, because the ordering of
the eigenvalues is important. A case that can be solved without this reduction is

ID’(A’(R)Aq)DI=IAI "+"q (Xf-q +x-q),
i>j

where p and q are integers (positive, negative or zero).
Similar results hold for the Kronecker sum I(R)A +A (R)1:
LEMMA 4.5. For any (n, n) matrix A with eigenvalues h ( 1... n),
(i) DL(I(R)A +A(R)I)D=(I(R)A +A(R)I)D--2N(I(R)A)D--2N(A(R)I)D;
(ii) the eigenvalues of L(I(R)A +A (R)I)D are h +Xj, i>-_j’;
(iii) IL(I(R)A +A(R)I)DI--2"IAIII,>j(A, +hi);
(iv) [L(I(R)A +A(R)I)D] - =L(I(R)A +A(R)I)-D;

for nonsingular I(R)A +A (R)I. The results (i) and (iii) can be generalized to
H H

(v) DL (A-n(R)Aa-)D (A-n(R)Aa-)D, H--2,3,...,
hffil h--l

and
H

(vi) IL (An-n(R)Ah-1)Dl=H’lAl"-’IIi>jlxij,
h--1

where

H=2,3,-..,

ftij (i--kj)
if ’i

H--IHX if k

The next lemma concerns the detenant of the sum or the difference of the
matrices L(A@A)D and L(BB)D.

LEM 4.6. Let A and B be (n, n) mtrices. Then the detemint

IL(A@AXB@B)DI
equals

(i) A + i](1 AiAj), ifA is nonsingular and hi, 1... n, are the eigenvalues
of BA -"

(ii) ij(auajj biibjj), if Af(aij) and Bf(bij) are lower trianlar;
(iii) Hij(PiPj Oi’), ifABfBA, where Pi and #i (iffi 1... n) denote the eigenvaV

ues of A and B.
Again, owledge of p and is, in general, not sufficient to compute (iii). See

the remarks under Lena 4.4(vi).
A final lemma will prove useful in 5 and 6.
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LEMMA 4.7. Let P be a lower triangular and nonsingular (n, n) matrix, and a a
scalar. Let

(i) IL[e’(R)e+avecP(vece’)’]L’l=( +an)lel"+;
(ii) L[ P’ (R) e + avece(vecP’)’]L’)- L[P’- 1(R) e flvecP l(vecP’- I)’]L’,

where a/(1 + an). Let further A be a symmetric and nonsingular (n, n) matrix. Then,
(iii) L[A (R)A + avecA(vecA)’]D ( + an)l A["+ 1;
(iv) [L[A (R)A + avecA(vecA)’]D -1 L[A l(R)A -1 _/3vecA -l(vecA-I)’]D.
This ends the theoretical part of this paper.

5. Maximum likelihood estimation of the multivariate normal distribution. We
shall now show the usefulness of L and D in a number of applications. Consider a
sample of size m from the n-dimensional normal distribution of y with mean/t and
positive definite ovariance matrix O. The maximum likelihood (ML) estimators of/t
and are well known, but the derivation of these estimators is often incorrect. The
problem is to take properly into account the symmetry conditions on O, as has
recently been stressed by Richard (1975) and Balestra (1976). More precisely, we
should not differentiate the likelihood function with respect to veer, but with respect
to v(O). First we derive the ML estimators of /t and (Lemma 5.1), then the
information matrix and asymptotic covariance matrix (Lemma 5.2), and finally we
investigate properties of the random vector v(F), an unbiased estimator of v(O).

LEMMA 5.1. Consider a sample of size m from the n-dimensional normal distribution

of y with mean /t and positive definite coariance matrix 0. The maximum fikelihood
estimators of/t and are

(it= - . y,=-Y;

),.

Proof. The loglikelihood function for the sample is

mlogAm(y;/t, v(O}) " nmlog2r- - trO IZ,

where m

Z---- E (Yi--/t)(Yi--/t)’"
i---1

Using well-known properties of matrix differentials (see (2.10)-(2.13)) and traces
(2.4)-(2.5), the first differential of A can be written as

mdlogl OdA - - tr(d - )Z- i tr dZ

mtrtI) ldtI) + IZ- trO l(dO)O

+ "trO- (Yi-/t)(d/t)’ + (d/t) E (Yi

ltr(ddp)O-l(Z-mO)0-1 + (d/t)’O-I (Yi --/t)
2

!(vecdO)’(o-lo-1)vec(Z-mO)+(d/t)’O-I E (Yi2

-(dv(O))’D’(O-lo-l)vec(Z-m*)+(d/t)’O-l E (Yi
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Necessary for a maximum is that dA=0 for all d/v0 and dv()vO. This gives-1Z (yi --/) =0

and

D’( -1@ -1)vec(Z_me) =0.

The first condition implies f=(1/m)Y,y -----. The second can be written as

D’( -’(R) 1)Dv(Z-me) 0,

that is

v(Z-mt) O,

since D’(-(R) )D is nonsingular. Thus,

=(1/m)=(1/m) (Yi --)(Yi--)" 1-]

The precision and efficiency of an estimator is usually stated in terms of the
information matrix defined by

02Am O’xI E
)0)0’

Its inverse is a lower bound for the covariance matrix of any unbiased estimator of
and v(). This is the Cram6r-Rao inequality (see, e.g., Rao (1973)). The asymptotic
information matrix is defined as

xI,= lim xI,,,,,
m-- oo m

and its inverse is the asymptotic covariance matrix of the ML estimator.
LEMMA 5.2. The information matrix for t and v() is the (-2 n(n+3), in1

(n + 3)) matrix

-1 o ).--1( --1-1D’( )D

the asymptotic covariance matrix of the ML estimators f and v() is

0 2LN((R))NL’

and the generalized asymptotic variance of v() is

I2LN( (R)dp)NL, 2,,11.+ 1o

Proof. Recall that the first differential of A is

--1 --1dA=(d)’-l (Yi --P’)+ (dv())’D’( )vec(Z-m

1Some authors refer to XIml (rather than xI,-1) as the asymptotic covariance matrix of d.
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The second differential is therefore

d2A=(d)’(de-l) E (Y,-)-m(d)’*-’(d)

’D’( -1))vec(Z+ -(dv(dp)) d(dp-’(R)dp --map)- -1, )v c(aZ-maO).

Taking expectations, and observing that Ey =, EZ=m, and EdZ=O, we find

( m )(dv()),D,(-l 1)vecdEaA=m(att)’ ’( at, ) + -[m ,(=m(d)’-(dt)+l,T1(dv(,))’D - (R)- )Ddv(O).

The information matrix then follows. From Lemma 4.4 we know that

and

Hence,

and

D’(*- l)(I)-1)DI 2(l/2)n(n- 1)11-("+ 1).

o )2LN(r(R)O)NL’

12LN(p(R)dp)NL’ 2(’/2),,("+ l) D’(O -1() (I) --’)DI -’

=2(1/2)n(n+l)2-(1/2)n(n-1)ld#l"+l=2nldPl"+l. i--]

The ML estimator v()) is not an unbiased estimator of v(). Let us therefore define

F
m

y" (Yi--Y)(Yi __y)t_. mo"
m--1

The following properties of v(F) can then be established.

LEMMA 5.3. The random vector v(F) is an unbiased estimator of v(dp),
(i) Ev(F) v().

Its covariance matrix is

(ii) cov(v(F))=2(LN(dp(R)dp)NL’)/(m- 1),
and v(F) is therefore a consistent estimator of v(dp). In particular,

(iii) var(fy)=(qi +qiiqyj)/(m- 1), i>__j"= 1... n.
Finally, the efficiency of v(F) is

(iv) eff(t(F))’--[(m- 1)/m](1/2)n(n+ l).
Proof. We know that

mS= X (yi-Y)(yi-Y)’= Xyiy;-myg’

is centrally Wishart distributed W(m-1, ), see Rao (1973, p. 537). Therefore, as
derived in Magnus and Neudecker (1979, Corollary 4.2),

me,=(m- )O,



THE ELIMINATION MATRIX 435

and

cov(mvec) (m 1)( I+K)(@).
Thus, v(F)--(m/(m-1))v()is an unbiased estimator of v() and its covariance
matrix is

cov(v(F)) 1cov(mv()) 1cov( Lvecm)
(m-l))- (m-l)

(m- 1)2
.(m--1)L(I+K)(dp(R)d)L’

2 2
.LN((R))L’= .LN((R))NL’.

(m-l) (m--l)
We see that cov(v(F))0 as mo. This shows that v(F) is a consistent estimator of
v(), given (i). The diagonal elements of LN(tb(R))NL’ can be derived as follows.
Let i>_; then, by (2.8), Lemma 3.3 (i), and (2.5),

u;jLN(dp@d# )NL’uij ( v( Eij ))’LN(d@d# )NL’v( Eij)

(vec( Eij + Eji ))t(f(f)vec( Eij +Eft)

Thus,

2

var(f/j)
(m- 1) qij + qiiqjj).

Finally, the efficiency of v(F) is [see Anderson (1958, p. 57)]

-EO2A
-1

Ov(O)0v(O)’
eef(v(F))=

Icov(v(F))l

2
)NL’(m 1)

-I

-D’(dp dp )D

----I (m--l)
-1

Lemmas 5.1 and 5.2 can be straightforwardly generalized by allowing the Yi to
have different expectations/i. Clearly, it is not possible to estimate all/ (i= 1.-- m)

In(n+ 1) parameters, from nm observations. If, however, weand v(), i.e., nm+ -assume that the/ depend upon a fixed number of parameters (01- 0r)=0’, and/ is
the ML estimator of 0, then the ML estimator of is

(1)= Y. (Y,-li())(Yi-ti())"
and the asymptotic covariance matrix of v() is again

as.cov(v()) 2LN(dp(R)O)NL’.
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6. Jacobians. Let the matrix Y be a one-to-one function of a matrix X. The
matrix J J(Y, X) (vecY/0 vecX)’ is called the Jacobian matrix and its determi-
nant the Jacobian of the transformation of X to Y.

Because the ordering of the variables is arbitrary, the value of the Jacobian can
vary in sign, but since only the absolute value matters, this should not worry us. Note
that our. definition of a Jacobian differs from some textbooks’, where J(Y, X) is
defined as I vecY/vecX 1.

Consider for example the linear transformation

Y=AX,
where X and Y are (m, n) matrices, and A is a nonsingular (m, m) matrix. Taking
differentials and vecs we have

dY=AdX,
and

so that

dvecY=(I(R)A)dvecX,

IJ(Y,X)I=
)vecY

OvecX =II(R)AI--IAI"

The evaluation of Jacobians of transformations involving symmetric or lower
triangular matrix arguments is not straightforward, since in this case X contains only
n(n + 1) "essential" variables. To account for this, a variety of methods have been

used, notably differential techniques (Deemer and Olkin (1951) and Olkin (1953)),
induction (Jack (1966)), and functional equations induced on the relevant spaces
(Olkin and Sampson (1972)). Our approach finds its root in Tracy and Singh (1972)
who used modified matrix differentiation results to obtain Jacobians in a simple
fashion.

n(n + 1) variables Yij and the i n(n + 1)Consider the relation between the i
variables xij given by

Y=AXA’,
where X (and hence Y) is symmetric. Taking differentials and vecs, we have

dvecY=(A(R)A)dvecX,
and, using the definitions of L and D,

dv(Y) L(A (R)A )Ddv(X),
so that by Lemma 4.4 (iv)

IJ(Y,X)I=
Ov(X)

--IL(A(R)A)DI--IAI "+’.

See also Deemer and Olkin (1951), Anderson (1958, pp. 156 and 162), Jack (1968),
Tracy and Singh (1972), and Olkin and Sampson (1972). Anderson unnecessarily
assumes that X has a Wishart distribution or that A is triangular. A more general
transformation is

Y=AXA’ +_. BXB’,
where X again is symmetric. This yields

dv(Y)=L(A<A +_.BB)Ddv(X),
and the Jacobian matrix is

J( Y, X)=L(A &A ++_ B(R)B)D,
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of which we know the determinant from Lemma 4.6. See Tracy and Singh (1972) for
an earlier (wrong) solution in the case AB--BA.

We now turn to nonlinear transformations involving symmetric matrix arguments.
Consider

Y=XAX,
where A and X are symmetric. Differentiating,

dr= (dX) X+X(dX)
so that

and

dvecY= (XA (R)I+ I(R)XA)dvecX,

dr(Y) L(XA (R)I+ I(R)XA)Ddv(X).
Thus, from Lemma 4.5 (iii), the Jacobian is

IJ(Y, X)I=[L(XA(R)I+I(R)XA)DI=2"]AI]X ]-[ (h +hj),
i>j

where hi, i= 1..-n, are the eigenvalues of XA. This problem has been studied by
Tracy and Singh (1972), but not solved satisfactorily. See also Olkin and Sampson
(1972).

The inverse transformation

y=x -,
for symmetric X gives

av( r) L(X ’(R)X ’)Dav(X)
Disregarding the minus sign, the Jacobian is (Lemma 4.4 (iv))

IJ(Y, X)l-- lt(x-l(R)x-1)Ol--lXl --(n+l).

See Jack (1968), Zellner (1971, pp. 226 and 395), and Olkin and Sampson (1972).
Zellner assumes (unnecessarily) that X is positive definite.

More interesting is the transformation, again for X--X’,

y--ISiS -l.
Totally differentiating yields

dV--(dlXl)X -I +lgldX -I

---IX I(trX -dX)X -ISiS -(dX)X -’,
so that

and

dvecY= IX I[ (vecX ’)(vecX 1)’dvecX- (X -l(R)x 1)dvecX]
-IXl[ X-Ix-I-(vecX-1)(vecX-1)’]dvecX,

dv( Y) -[XIL[ x l(R)x -’ (vecX )(vecX ) ] Dd)(X).
The Jaeobian is

Jar(y, X)l--IX <l/)"<"+ ’)ILl X -l(x -1 (vecX l)(vlcX -l)t] D
--Ixl(l/)"("+’)(1-n)lXl-<"+’) (by Lemma 4.7 (iii))

--(n-- 1)lxl ’/-"+’"-=>.
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See Deemer and Olkin (1951) for a solution along completely different lines, assuming
X to be positive definite rather than only symmetric.

As a final example of the usefulness of L and D in evaluating Jacobians of
transformations with symmetric matrix arguments, consider

Y=X’, p=2,3,’".

Upon differentiating we find

ar=(ax)x -’ +x(ax)x +...
P

E x -’(dX)X
h.

which gives
P

dvecY= ] (X’-h(R)Xh-)dvecX,
h---I

and
P

dv(Y)=L , (X’-h(R)Xh-’)Ddv(X),
h--I

so that the Jacobian matrix is
P

J(Y, X)=L E (X’-n@Xn-I)o,
h--1

the determinant of which is given in Lemma 4.5 (vi).
n(n+ 1) variablesSummarizing, we have considered six relations between the i

of a symmetric matrix Y and the i n(n + 1) variables of a symmetric matrix X. The
results are given in Table 6.1.

Let us now investigate transformations involving lower triangular matrix argu-
ments. Consider the relation between lower triangular Y and lower triangular X given
by

Y= PXQ,
where P and Q are also lower triangular. We find

dvecY=(Q’(R)P)dvecX,
and thus

dv(Y ) L(Q’ (R)P)L’dv(X ).
Hence, the Jacobian is

IJ(Y, X)I=IL(Q’(R)P)L’I= ]-IPiiqii -i+l (Lemma 4.3 (i)).

This problem has been solved by Olkin and Sampson (1972), Deemer and Olkin
(1951) for Q=I, and Olkin (1953) for P=I.

More general is the transformation

Y=PXQ+RXS,
with lower triangular P, Q, R, S. This leads to

dv(Y)=L(Q’(R)P+ S’(R)R)L’dv(X),
and the Jacobian follows from Lemma 4.3 (ii).
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TAnLE 6.1
Jacobians of transformations with symmetric matrix arguments

Transformation Jacobian J(Y, X)l Conditions, particularities

(i)

(ti)

(iii)

(iv)

(v)

(vi)

Y=AXA’

Y AXA’ +BXB’

Y=XAX

YffiX’ (pffi2,3,...)

IAln+ lij.(l +-hihy)

(aiiajj +-biibjj)
i>_j

(, +_ooj)*

i>j

Ixl--(n+ 1)

(n- 1)lxl0/2"+ .-2)

plXl- II

*See the remarks under Lemmas 4.4 (vi) and 4.6 (iii).

IAI=0
Ihl=/=O, hi (iffi l. n)

eigenvalues of BA

A =(aij and B,f(bij

lower triangular

ABffiBA, Ii and 0 (iffi 1... n)

eigenvalues of A and B

AffiA’,Ai(i=l...n

eigenvalues of XA

Ixl*0
Ixl0

(xf-x;)/(x,-xs), if
ij

p)k-1 if )k

where A (i 1..- n) are
eigenvalues of X

Next, we consider the relation between symmetric Y and lower triangular X given
by

Y= B’XA +A’X’B.
Using the same technique, we have

dvecY= (A’ (R)B’)dvecX+ ( B’ (R)A’)dvecX’
A’ (R)B’ + (B’ (R)A’)K] dvecX (Definition 2.1a),

and

dv(Y)=L[ A’(R)B’ +(B’(R)A’)K]L’dv(X).
The Jacobian is

by the definition of N and Lemmas 2.1 (ii), 3.5 (ii), and 3.4 (i). The determinant
[L(A (R)B)D] can of course be evaluated for each specific A and B. In particular, if
A P and B Q’R, or A PQ’ and B R’, where P, Q, and R are lower triangular, we
can express this determinant in terms of the diagonal elements of P, Q, and R, by
Lemma 4.3 (iii)-(iv). Special cases have been solved by Deemer and Olkin (1951)
(A =P’ and B=I) and by Olkin (1953) (A---1 and B=P).
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Turning now to nonlinear transformations involving lower triangular matrix
arguments, we first consider the relation

Y XPX,
with lower triangular P. We find

at= (ax )ex+xe(ax)
and

dv( r) L(X’P’ (R)I+ I(R)XP)L’dv(X ).
By Lemma 4.3 (ii) the Jacobian is

IJ(Y, X)I=IL(X’P’(R)I+I(R)XP)L’I I (px +PiiXii)

--=lel IXl II (PiiXii-["pjjxjj).
>j

The next transformation is between a symmetric Y and lower triangular X,
Y=X’AX+XBX’,

where A---A’ and B---B’. Proceeding as before we find

dvecY=(I(R)X’A +.XB(R)I)dvecX+ (X’A (R)I+ I(R)XB)dvecX’

=2N(I(R)X’A +XB(R)I)dvecX,
so that

dv( Y) 2LN(I(R)X’A +XBI)L’dv(X).
The Jacobian is thus

[J(Y, X)] 2(1/2).(.+ 1) IL(I(R)AX+ BX’(R)I)NL’[

2"IL ( I(R)AX+ BX’ (R)I)D[.
Special cases are the transformations Y=XX’ (A =0, B=I) and Y=X’X (A =I, B=0),
for which the Jacobians can be expressed in terms of the diagonal elements of X by
Lemma 4.3 (iii)-(iv). See Deemer and Olkin (1951), Olkin (1953), Jack (1966), Olkin
and Sampson (1972), and Zellner (1971, p. 392).

The Jacobians of the transformations Y=X 1, y= [X[X 1, and Y--X’, p
2, 3,.-., for lower triangular X and Y can be determined in a fashion very similar to
their symmetric counterparts. For Y=X- we find

dv(Y ) I( x’ l(R)x 1)’dv(X).
For Y--Ixl x-,

dv(Y) -ISlt[ X’- (R)X vecX (vecX’- )’ Z’dv(S ),
and for Y X’,

P

av(r)= X [(X’)-hx-l]Z:av(X).
h-’-I

The Jacobians of the three transformations are easily recognized as determinants
which have been studied in 4 (Lemmas 4.3 (i), 4.7 (i) and 4.3 (vi)).

The above discussion about Jacobians of transformations with lower triangular
matrix arguments is summarized in Table 6.2.
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TABLE 6.2
Jacobians of transformations with lower triangular matrix arguments

Transformation Jacobian J(Y, X)l Conditions, particularities

(i)

(ii)

(iii)
(iiia)
(iiib)

Y--PXQ

(v)
(va)
(vb)

Y-- PXQ+RXS

Y-- B’XA +A’X’B
Y-- R’QXP+ P’X’Q’R
Y=RXPQ’ + QP’X’R’

II 9i _n-i+
ir ii ttii

II (p.qjj +r.sn)
2"IL(A@B)DI

2 n--i+IIi( qiirii) Pii
2nIIi(Piiqii)n-i+ lr/i

P, Q lower triangular

P, Q, R, $ lower triangular

P, Q, R lower triangular
P, Q, R lower triangular

(iv) YfXPX 2"IPI IxlII,>tp,,x,, +pjjxn) P lower tdangular

A--A’,B--B’2"IL(I(R)AX+ BX’ (R)I)DI
2nIIix.-i+l

2 IIixii

Y=X’AX+XBX’
Y=XX’
Y--X’X

(vi) Y--X-’ Ixl-(n-t-l) IXlO
(vii) Y--IXIX -1 (n- 1)lxl <’/zx"+ l"--) IXlO

p" Xlp- II i>flxiy(viii) YfXP(p---2,3, I.tij if Xii =i/=Xjj

pxfi-- if Xti
where xii (iffi 1-’- n) are the
diagonal elements of X

7. Matrix equations. A third area where we can demonstrate the usefulness of the
matrices L and D is the solution of matrix equations. Suppose we are given a matrix
equation Y= F(X), where we know a priori that X is symmetric (or triangular). We
wish to solve X in terms of Y. If Y is a one-to-one function of X, as in the preceding
section on Jacobians, then X--F-I(Y) is the unique solution. If, however, Y is not in
one-to-one correspondence with X, we have to restrict the solution space of X to
symmetric (or triangular) matrices. In other words, we should not solve for X, but for
v(X). An example may clarify this approach.

LEMMA 7.1. The vector equation

QvecX-vecA,

where Q and A are (n2, n2) and (n, n) matrices respectively, and X is known to be
symmetric, has a solution for X if and only if

QD(QD)+vecA vecA,

in which case the general solution is

vecX= D(QD)+vecA + D[ I- (QD) +QD ]vecP,
where vecP is an arbitrary n(n+ 1)-vector and (QD) + denotes the Moore-Penrose
inverse of QD.

Proof. Since X is symmetric, we have vecX---Dv(X) and thus QDv(X)=vecA.
The consistency and solution of this system follow from Penrose (1955, p. 409). Thus,
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if a solution exists, it has the form

v(X ) (QD) +vecA + I- (QD) + QD vece,
for arbitrary P. Premultiplication with D gives the desired result. [5]

This problem has also been studied by Vetter (1975, p. 187), but not solved
satisfactorily. If Q is nonsingular, a solution exists if and only if (I-K)Q-lvecA =0.
The (unique) solution then takes the form vecX=Q-lvecA. If LQD is nonsingular,
we may write the solution, if it exists, as vecX=D(LQD)-LvecA. This is Vetter’s
solution. He assumes nonsingularity of Q and of LQD (neither of which implies the
other!) and also tacitly the existence of a solution for vecX. Note that if we know X to
be lower triangular rather than symmetric, the solution is obtained by replacing D
with L’.

As a final example, let us consider a problem which arises in dynamic economet-
ric models. It concerns the equilibrium covariance matrix. We want to find the matrix
of partial derivatives of S with respect to A for S =ASA’ + V, with symmetric V and S,
when all eigenvalues of A are less than in absolute value. This problem was first
studied by Conlisk (1969) who derived OvecS/aij for each element of A separately.
Neudecker (1969) gave a compact expression for OvecS/OvecA. His derivation is
wrong, but the result is correct.

LEMMA 7.2. Consider the matrix equation

S=ASA’ + V,
when S and V are symmetric (n, n) matrices, and all eigenvalues ofA are smaller than
in absolute value. The partial derivatives of S with respect to A can be expressed as

( )vecS ),3 vecA 2N( I(R)I-A (R)A )-1(AS(R) I).

The partial derivatives of the distinct elements of S with respect to A can be expressed as

)vecA 2LN(I(R)I-A @A)-I(AS@I).

Proof. We take differentials and vecs"

dS=A(dS)A’ +(dA)SA’ +AS(dA)’ +dV,

dvecS=(A (R)A)dvecS+(AS(R)I)dvecA +(I(R)AS)dvecA’ +dvecV.

Using Lemma 2.1 (ii), and the definitions of K and N, we have

( (R)I-A (R)A)dvecS= [ AS(R)+ ( I(R)AS)K] dvecA + dvecV

AS(R)I+K(AS(R)I)]dvecA + dvecV

2N(AS(R)l)dvecA + dvecV.

Since the eigenvalues of A are smaller than 1 in absolute value, the matrix I(R)I-A (R)A
is nonsingular, and

(I(R)I-A@A)-’= " (AhAh).
h,=O
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Thus, by Lemma 2.1 (v),

dvecS-- 2 (An(R)Ah )N( aS(R)I)dvecA + ( I(R)I-A (R)A)- ldvec
h

=2N", (Ah(R)Ah)(AS(R)I)dvecA +(I(R)I-A(R)A)-ldvecV
h

--2N(I(R)I-A(R)A)-I(AS(R)I)dvecA +(I@I-A@A)-ldvecV,
and dv(S)=LdvecS=2LN(I(R)I-A(R)A)-l(AS(R)I)dvecA

+ L(I(R)I-A (R)A)- ldvecV.

Appendix: proofs of lemmas in 4.
Proof of Lemma 4.1. Let A and B be (n, n) matrices. We shall write L(A (R)B)L’

in terms of unit vectors, using the explicit definition of L and (2.5).

i>=j s

Y E (vecEij)’(A(B)(vecEst)uiju’s,
i>--__js>t

X tF(EjinEsta’)uijust-- Z ajtbisuijust
i>=j s>-_

If A A, B M, and ij denotes the Kronecker delta symbol (8i =0 if :/:j, 8u 1),
we find

L(A(M)gt= i>:j s> jtisXjl’LiUijU;t Z XjLiUijUj’
----t i>----j

which is a diagonal matrix (since UijUj is diagonal) with elements Li)kj, i>=j", and
determinant IIi>_ fiziX IIi]Liik-i+ 1.

If A =P and B=Q, we have L(P(R)Q)L’ =Yi>j s>=t Pjtqisuijust. Because P and
Q are lower triangular, we may restrict the summation to i>=j >-t, i>=s>=t. This implies
that the matrix uiju’t is lower triangular. Hence, L(P(R)Q)L’ is lower triangular. By
putting s=i and t=j, we find that its diagonal elements are qiiPjj, i>-, and its
determinant is IIi>_j qiiPjj II _i _n-i+

iqiil)ii

Similarly, we can express L(A (R)B)D in terms of unit vectors, using the explicit
definitions of L and D. One verifies that

(A (R))D (A(R))’ + r(A, ),
where

I’(A, B) E E ajsbituiju’s,.
i>--_j s>t

Consider the matrix F(A, B). It is easy to see that F(A, M)=0. If A=P and
B Q, we may restrict the summation to >___d" >s > t, so that F(P, Q) is strictly lower
triangular. If A P’ and B Q’, we may restrict the summation to s > t >-i >=j’, so that
F(P’, Q’) is strictly upper triangular. The properties of L(A(R)M)D, L(P(R)Q)D, and
L(P’(R)Q’)D then follow from the properties of L(A(R)M)L’ and L(P(R)Q)L’. W]
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Proof of Lemma 4.2. Let P and Q be lower triangular and v(X) arbitrary.
Remembering that L’v(X)--vecX (Lemma 3.3 (i)), we have

Thus,

L’L(P’ (R) Q )L’v(X) L’L( P’ (R) Q)vecX L’LvecQXP

vecQXP= ( P’(R) Q)vecX ( P’ (R)Q )L’v(X ).

L’L(P’(R)Q)L’=(P’(R)Q)L’.
Property (ii) follows from repeated application of (i). Further, D’(P’(R)Q)L’=
D’L’L(P’(R)Q)L’ =L(P’(R)Q)L’, since LD---I (Lemma 3.5(i)). Let us now determine
the eigenvalues of L(P’(R)Q)L’. We will need the following result.

Result A.1. Let P be a lower triangular matrix with distinct diagonal elements.
Then there exists a lower triangular matrix S with ones on the diagonal such that
s-eS=dg(e).

In(n--1) equations in n(n-1) unknowns (sij, i>j) givenProof. Consider the i
by PS=Sdg(P). This gives Pij+,ih_j+lPihShj=Sijpjj, i>j, from which we can
sequentially solve for sj+ 1, (J= 1..- n- 1), s+2, (j= 1.-- n-2),-.-, sn. I-’1

Assume that both P and Q have distinct diagonal elements. Then, by Result A.1,
there exist lower triangular matrices S and T with ones on the diagonal such that

S PS dg(P) and T QT=dg(Q).

By repeated application of (i) we see that

L(S’@ T-’)L’L( P’(R)Q)L’L(S’- ’(R)T)L’
L( S’P’S’-1(R) T -IQT)L’=L(dg(P) (R)dg(Q))L’,

and

L(S’(R)T-’)L’L(S’-’(R)T)L’=LL’=I.
From Lemma 4.1 we know that L(dg(P)(R)dg(Q))L’ is a diagonal matrix with
elements q,pj, i>=j". These, therefore, are the eigenvalues of L(P’(R)Q)L’.

If not all diagonal elements of P and Q are distinct, we can obtain (iii) by way of
a limiting relation, starting with P+ A and Q+ A, where A is a diagonal matrix with 8h
as its h th diagonal element. If is sufficiently small, P+ A and Q+ A will each have
distinct diagonal elements. Hence the eigenvalues of L[(P+A)’(R)(Q+A)]L’ are
(q, +Si)(p +), i>_. Letting 6---0, we find the desired result. I"]

Proof of Lemma 4.3. Using Lemma 4.2, we have

L(eo’ (R)R’S)L’I L( P(R)R’)(Q’ (R)S)L’I L( P(R)R’)L’L(Q’(R)S)L’I

1[ siiqjj-IL(P’(R)R)L’IIL(Q’(R)S)L’I=(i>.jriiPjJ)(i>
j

)
H (riisii)i(Piiqii)n-i+ l.

To prove (ii) we first assume that P and Q are nonsingular. Then, by Lemma 4.2 and
LL I,

L(P’(R) + R’(R)S)L’=L(I(R)I+ R’P’-’(R)SQ-’)(P’(R)Q)L’

=L(1(R)1+ R’P’-’(R)SQ-’)L’L( P’(R)Q)L’
(1+ L( R’P’-’(R)SQ -’)L’)( L(P’ (R)Q )L’).
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Hence,

iIj ( Sii J ) ijIL(P’(R)Q+R’(R)S)L’I-- -t’-- (qiiPjj)--’-- H (qiiPjj -’Siij)"
qii Pjj ij

If P or Q is singular, we obtain (ii) starting with P+1 or Q+I, where is small and
P+ 8I or Q+1 is nonsingular. To prove (iii) and (iv) we use Lemmas 4.1 (iii) and 4.2
(i) and (iii)"
L(P(R)Q’R)DI= L(P(R)Q’)(I(R)R)D I-- L(P(R)Q’)L’L(I(R)R)DI

_i _n--i+=IL(P’(R)Q)L’IIL(I@R)DI=HiqiiIii Hirii=Hi(qiirii)Pi-’+1

L( PQ’ (R)R’)DI= [L( P(R)R’)( Q’ (R)I )D I= L( P(R)R’)L’L(Q’@I)D
n--i+ i+1 n--i+l--IL(P’(R)R)L’IIL(Q (l)Dl--IIiriiPii lIIiqi- --IIirii(Piiqii)

For nonsingular P, Q, R, S, we again use Lemma 4.2 (i) to prove (v) as follows.

L( PQ’ (R)R’S)L’L( Q’- l(s -1)L’L(P -’(R)R’-

L(P(R)R’)L’L(P -’(R)R’-’)L’-- LL’-- I.

Let us now show (vi). Assume that P has distinct diagonal elements. Then there exists
a lower triangular matrix S with ones on the diagonal such that S-IpS=A, with
A dg(P) to simplify notation (see Result A. 1). Thus,

L [(P’)H-h(ph-1]L’-- EL[St-IAH-hs’SAh-Is-I]L
h--1 h

Because

we have

L(S’-I@S)L’L(A-h@Ah-’)L’L(S’@S-’)L
h

=(L(S’-’@S)L’) Z (L(AH-h@An-I)L’)(L(S’@S-’)L’)
h

( L(S’-l(S)L’) -1= L( S’(S -I)L’,

L E [(P’)H-h@ph-1] L’
hl

E L(AH-h(Ah-1)L’
h

Now, from Lemma 4.1 we know that L(AH-h(Ah-1)L is a diagonal matrix with
diagonal elements xh/--lhjH--h, t’>’--__,/. Hence Y.ff.. IL(An-h@Ah-)L is diagonal with
elements v xh- IxH-h i’, and deternant

L(g-h@h-l)L’ 2 .-lxj-h (-1) N -lxj
h i4" hffil hffil

Hwhere ftij -X= lphii ,_n-hpjj (since k --Pii)-.(piHi --pjj )/(Pii--Pjj)" The case where not
all diagonal elements of P are distinct, say p, =pjj, can be considered to be a limiting
case of the situation where pjj approaches Pii. Taking the limit as Pjj--Pii, we find
Iij HPiHi -1 [-]
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Proof of Lemma 4.4. Using the properties DLN=N, D=ND, and (A(R)A)N=
N(A(R)A)--see Lemmas 3.5 (ii), 3.6 (ii), and 2.1 (v)--we have

DL(A (R)A)D DL(A @A)ND DLN(A@A)D N(A@A)D
=(A(R)A)ND=(A(R)A)D.

This proves (i). By repeated application of (i) we find (ii). To prove (iii) we note that
n(n- 1)L(A(R)A)D and DL(A(R)A) have the same set of eigenvalues apart from i

zeroes which belong to the latter matrix. Let A have eigenvalues h and eigenvectors
xi; then

DL(A (R)A)(x(R)xj + x.i(R)xi)= DL(Axi(R)Axj +Axj(R)Ax)
=XiXDL(x,(R)xj + xj(R)xi)-- X,XjDLvec(xjx
=X,:vec(x:x +xxj) (by the implicit definition of D)

=XX(x(R)x + x(R)x).
Hence, DL(A(R)A) has eigenvalues XX:, i>__j", plus g n(n-1) zeroes, and L(A(R)A)D
has eigenvalues X),:, i>-_j". Its determinant is

L (A @A )D i>.j x ’j I[)k]+lIAIn+l’i
Let us now prove (v) and (vi). Since D--NL’(LNL’) -1 (Lemma 3.5 (iii)), and

again using Lemmas 3.6 (ii) and 2.1 (v), we can write

D’(A A)D=(LNL’)-ILN(A (R)A)D=(LNL’)-IL( (R)A)D.
The properties of D’(A (R)A)D thus follow from the properties of LNL’ (Lemma 3.4)
and L(A (R)A)D (this lemma).

To prove (vii) we first assume that A has distinct eigenvalues. In that case there
exists a matrix T such that T- 1AT= A, where A is a diagonal matrix containing the
eigenvalues of A. From AB=BA we have TAT- 1B--BTAT-, or AM--MA, where
M-- T- IBT. Since all X’s are distinct by assumption, M is diagonal. Hence it contains
the eigenvalues of B. We may then write

D’(A (R)B)D D’(rat 1() rMr -1)D D’( r(R) r)(h(R)M)(r -1) T -I)D

D’(T(T)L’D’(AIM)DE(T -11T -I)D,
by (i). Hence, using (iv), the explicit definition of N, and Lemmas 3.5 (iii), 2.1 (ii), 3.4
(i), and 3.6 (ii),

D’(aB)DI= D’(h(R)M)DI=I(LNL’)-ILN(h(R)M)DI

1L(I+K)(A(R)M)D[---ILNL’I -115
--ILNL’I- 12-(1/2)n(n+ l) lg(AIM)D "t- L(M(A

=2-"IL(A(R)M+M(R)A)D I.

From Lemma 4.1 we know that L(A(R)M)D and L(M(R)A)D are diagonal matrices
with elements/zij and i/zj, i_._j’. The determinant of their sum is
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and thus

D’(A (R)B)DI=2 l-[ (t,X.i +kilJ,j)=2-nH (2Xil3,i) 1-[ (I,l,ikj
i>--_j i>j

=IAIIBI II (tLi)kj’t’)kitgj)
i>j

If A has multiple eigenvalues, say i =j, we consider this as a limiting case of
the situation where ,j approaches ,i- Taking the limit as Xj--->Xi the result follows. I--!

Proof of Lemma 4.5. From Lemma 2.1 (vi) and the properties ND---D and
DLN= N, follows (i). The proof of (ii) is similar to that of Lemma 4.4 (iii). Property
(iii) follows from (ii). Property (iv) follows from (i) since LD=I. We find (v) by
repeated application of DL(I(R)A+A(R)I)D=(I(R)A+A(R)I)D, and Lemma 4.4 (i).
Let us prove (vi). We proceed as in the proof of Lemma 4.3 (vi). If A has distinct
eigenvalues (or if A =A’), there exists a nonsingular matrix S such that S-AS=A,
where A is a diagonal matrix containing the eigenvalues of A. Thus,

H

L E (An-h(R)Ah-’)D=L., (SAn-hS-’(R)SAh-’S-’)D
h=l h

=L(S(R)S) _, (An-h(R)Ah-’)(S-’(R)S-’)D
h

=L(S(R)S)DL., (AH-h(R)Ah-’)DL(S-’(R)S-’)D,
h

by Lemmas 4.4 (i) and 4.5 (v). Since L(S-(R)S-)D=(L(S(R)S)D) -, and using
Lemma.4.4 (ii), we have

H

L
h,=l =ILE (AH-h(R)Ah-’)D

h

Lemma 4.1 tells us that L(AH-hAh-1)D is a diagonal matrix with elements
khi 1)tH h >-. Hence,.j

L (AH-h@Ah-1)D iI>J H-h H-1

hl hl

with

E -*=
h--1 (X --Xj)

If A has multiple eigenvalues, i--kj say, we again consider this as a limiting case of
the situation where , approaches ,i. Taking the limit as Aj--->)i we find #j =HX,n.-1.

Proof of Lemma 4.6. We shall only consider the determinant of the sum of
L(A (R)A)D and L(B(R)B)D. The determinant of their difference is proved in the same
way. By Lemma 4.4 (i),

L(A@A +B@B)D=(I+L(BA-I@BA-1)D)L(A@A)D.
If BA- has eigenvalues ,, i= 1... n, L(BA-(R)BA-)D has eigenvalues XiXj, i>_,
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by Lemma 4.4 (iii), so that, using Lemma 4.4 (iv),

IL(A(R)A +n(R)n)Ol---- (1 +kikj)lhl "+1.

To prove (ii) we first assume that A is nonsingular. Then,

IL(A(R)A +BB)DI=IAI+1 + (a,ayj +b,byy),
>j" a,aj

since A and B are now lower triangular. If A is singular, we obtain (ii) starting with
A + 8I, where d is small and A +I is nonsingular.

Consider now case (iii) where AB=BA. This result can be proved applying the
same method as in the proof of Lemma 4.4 (vii).

Proof of Lemma 4.7. We shall only show (iii) and (iv), as (i) and (ii) can be proved
similarly. Since A is symmetric and nonsingular by assumption, we have from the
implicit definition of D and Lemma 4.4, DLvecA=vecA, DL(A(R)A)D=(A(R)A)D,
IL(A(R)A)DI--IAI "+l, and (L(A(A)D) -l --L(A-I@A-)D. Thus,

L(A (R)A + avecA(vecA)’)D I+ aLvecA(vecA)’nL(A -l(A -l)n L(A (R)A)D

I+ aLvecA(vecA)’(A-’(A-’)D] L(A (R)A)D

[ I+ a( LvecA)( D’vecA ’)’] L(A (R)A)D.

Since for any two vectors x and y of the same order,

[I+xy’l= +y’x and (I+xy’)-l=I
+y’x

we find

I1+ a(LvecA)( D’vecA 1)’ + a(vecA )’DLvecA

+a(vecA- )’vecA + atrA-IA + an,

and

I+ a( LvecA)(D’vecA )’] -’ I-
+an LvecA(D’vecA )’.

Hence,

[L(A@A +avecA(vecA)’)Dl=(1 +an)IL(A(R)A)DI=(1 + an)lAI "+1,

and

L(A (R)A +avecA(vecA)’)D] -
a=L(A-(R)A-1)D I-
+an

LvecA(vecA )’D

=L[A_(R)A_ a

+an (A (R)A )DLvecA(vecA -)’] D
=L[A_I(R)A_ a

+an (vecA )(vecA 1),] D.
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