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In this paper we bring together those properties of the Kronecker product, the 
vec operator, and 0-1 matrices which in our view are of interest to researchers 
and students in econometrics and statistics. The treatment of Kronecker prod- 
ucts and the vec operator is fairly exhaustive; the treatment of 0-1 matrices is 
selective. In particular we study the "commutation" matrix K (defined implicitly 
by K vec A = vec A' for any matrix A of the appropriate order), the idempotent 
matrix N = -(I + K), which plays a central role in normal distribution theory, 
and the "duplication" matrix D, which arises in the context of symmetry. We 
present an easy and elegant way (via differentials) to evaluate Jacobian ma- 
trices (first derivatives), Hessian matrices (second derivatives), and Jacobian 
determinants, even if symmetric matrix arguments are involved. Finally we 
deal with the computation of information matrices in situations where positive 
definite matrices are arguments of the likelihood function. 

1. INTRODUCTION 

The purpose of this paper is to bring together those properties of the (simple) 
Kronecker product, the vec operator, and 0-1 matrices (commutation matrix, 
duplication matrix) that are thought to be of interest to researchers and stu- 
dents in econometrics and statistics. The treatment of Kronecker products 
and the vec operator is fairly exhaustive; the treatment of 0-1 matrices is 
(deliberately) selective. 

The organization of the paper is as follows. In Sections 2 and 3 we review 
(and prove) the main results concerning the Kronecker product and the vec 
operator. The commutation matrix Kmn is introduced as the matrix which 
transforms vec A into vec A' for any m x n matrix A. Its algebraic properties 
are discussed in Section 4. Closely related to the commutation matrix is the 
symmetric idempotent matrix Nn defined as N. = 2(In2 + K..), whose main 
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properties are obtained in Section 5 and whose role in normal distribution 
theory is discussed in Section 6. If A is a symmetric n x n matrix, its n(n - 1) 
supradiagonal elements are redundant in the sense that they can be deduced 
from the symmetry. If we eliminate these redundant elements from vec A, 
this defines a new vector which we denote as v(A). The matrix which trans- 
forms, for symmetric A, v(A) into vec A is the duplication matrix D.. The 
duplication matrix plays an essential role in matrix differentiation involving 
symmetric matrices, and also in solving matrix equations where the solution 
matrix is known to be symmetric. Its most useful properties are given in Sec- 
tion 7. The class of symmetric matrices is the most important example of a 
much wider class of matrices: L-structures. An L-structure is the totality of 
real matrices of a specified order that satisfy a given set of linear restrictions. 
Other examples of L-structures are (strictly) triangular, skew-symmetric, di- 
agonal, circulant, and Toeplitz matrices. In Section 8 the concept of an L- 
structure is defined and some of its properties discussed. In Section 9 we 
give what we claim to be the only viable definition of a matrix derivative 
(Jacobian matrix)-one which preserves the rank of the transformation and 
allows a useful chain rule. The Hessian matrix is defined in Section 10. Some 
examples show that the evaluation of Jacobian matrices and Hessian ma- 
trices can be short, elegant, and easy, even if the transformations involve 
symmetric (or L-structured) matrix arguments. Section 11 deals with the eva- 
luation of information matrices in situations where positive definite matrices 
are arguments of the likelihood function, while Section 12 shows how 0-1 
matrices can be used to evaluate certain Jacobian determinants. 

The historical references in Sections 3 and 4 are taken from Henderson 
and Searle's [9] interesting survey. 

The following notation is used. Matrices are denoted by capital letters, 
vectors and scalars by lower case letters. An m x n matrix is one having m 
rows and n columns; A' denotes the transpose of A, A' its Moore-Penrose 
inverse, and r(A) its rank; if A is square, tr A denotes its trace, JAI its deter- 
minant, and A'- its inverse (when A is nonsingular). [Rm x is the class of 
real m x n matrices and R n the class of real n x 1 vectors, so that R n 

R . The n x n identity matrix is denoted In. Mathematical expectation is 
denoted by i; variance (variance-covariance matrix) by 1r. 

2. THE KRONECKER PRODUCT 

Let A be an m x n matrix and B a p x q matrix. The mp x nq matrix defined 
by 

aj 1B alnB\ 
:1) (1) 

am 1 tB amnB 

is called the Kronecker product of A and B and written A (D B. 
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Observe that, while the matrix product AB only exists if the number of 
columns in A equals the number of rows in B or if either A or B is a scalar, 
the Kronecker product A (0 B is defined for any pair of matrices A and B. 
The following three properties justify the name Kronecker product: 

A ? B C = (A ? B) ? C = A ? (B QC); (2) 

(A + B) (C + D) = A (? C + A ?& D + B ? C + B ? D, (3) 

if A + B and C + D exist; and 

(A ? B)(C 0 D) = AC ? BD, (4) 

if AC and BD exist. 
If ax is a scalar, then 

x 0 A = ocA = Aox = A oca. (5) 

(This property can be used, for example, to prove that (A 03 b)B = (AB) 0 b, 
by writing B = B 0 1.) Another useful property concerns two column-vectors 
a and b (not necessarily of the same order): 

a' 0 b = ba' = b 0 a'. (6) 

The transpose and the Moore-Penrose inverse of a Kronecker product are 
given by 

(A 0 B)' = A' O B', (A O B)+ = A+ ? B+. (7) 

If A and B are square matrices (not necessarily of the same order), then 

tr (A (0 B) = (tr A)(tr B). (8) 

Of course, the trace of A 0 B may exist even when A and B are not square 
matrices; in that case the expression for tr (A 0 B) is more complicated, see 
[26, Theorem 3.2]. If A and B are nonsingular, then 

(A (? B)- 
I = A` 0 B-. (9) 

(The nonsingularity of A and B is not only sufficient, but also necessary for 
the nonsingularity of A 0 B; this follows from rank considerations, see equa- 
tion (1 1).) 

All these properties are easy to prove. Let us now demonstrate the following 
result. 
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LEMMA 1. Let A be an m x m matrix with eigenvalues A1, A2, A,,m 
and let B be a p x p matrix with eigenvalues Thl, /12 . . . lp. Then the mp 
eigenvalues of A 0 B are {ipj (i = 1, . . ., m, j = 1,. . ., p). 

Proof. By Schur's Theorem (Bellman [4, p. 202]) there exist nonsingular 
(in fact, unitary) matrices S and T such that 

S-'AS= L, T-'BT= M, 

where L and M are upper triangular matrices whose diagonal elements are 
the eigenvalues of A and B respectively. Thus, 

(S- 1 (' T- ')(A (8 B)(S (E T) = L O M. 

Since S-1 (0 T-1 is the inverse of S 0 T, it follows that A 0 B and 
(S'- 1 0 T `)(A 0 B)(S 0 T) have the same set of eigenvalues, and hence 
that A 0 B and L 0 M have the same set of eigenvalues. But L 0 M is an 
upper triangular matrix by virtue of the fact that L and M are upper triangular; 
its eigenvalues are therefore its diagonal elements )iyj. This concludes the 
proof. 

Remark. If x is an eigenvector of A and y an eigenvector of B, then x 0 y 
is clearly an eigenvector of A 0 B. It is not generally true, however, that 
every eigenvector of A 0D B is the Kronecker product of an eigenvector of 
A and an eigenvector of B. We emphasize this fact because it is often stated 
incorrectly, see e.g., [4, p. 235]. For example, let 

A B=( 0 0 el=(0) e2 (1 

Both eigenvalues of A (and B) are zero and the only eigenvector is e1. The 
four eigenvalues of A 0 B are all zero (in concordance with Lemma 1), but 
the eigenvectors of A B are not just e1 (0 e1, but also el 0 e2 and e2 0 el. 

Lemma 1 has several important corollaries. First, if A and B are positive 
(semi)definite, then A (0 B is positive (semi)definite. Secondly, since the de- 
terminant of A 0 B is equal to the product of its eigenvalues, we obtain 

|A 0 BI = IAIIPIBI M (10) 

where A is an m x m matrix and B is a p x p matrix. Thirdly, we can obtain 
the rank of A 0 B from Lemma 1 as follows. The rank of A 0 B is equal 
to the rank of AA' 0 BB'. The rank of the latter (symmetric, in fact positive 
semidefinite) matrix equals the number of nonzero (in this case positive) 
eigenvalues it possesses. According to Lemma 1, the eigenvalues of AA' 0 BB' 
are Aipj, where Ai are the eigenvalues of AA' and ,j are the eigenvalues of 
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BB'. Now, Aiuj is nonzero if and only if both Ai and ,j are nonzero. Hence, 
the number of nonzero eigenvalues of AA' 0 BB' is the product of the number 
of nonzero eigenvalues of AA' and the number of nonzero eigenvalues of 
BB'. Thus the rank of A 0 B is 

r(A 0 B) = r(A)r(B). (11) 

Historical note. The original interest in the Kronecker product focussed 
on the determinantal result (10), which seems to have been first studied by 
Zehfuss [43] in 1858. The result was known to Kronecker who passed it on 
to his students in Berlin, where he began lecturing in 1861 at the age of 37. 
The exact origin of the association of Kronecker's name with the 0 operation 
is still obscure. See MacDuffee [15, p. 81-84] for some early references. 

3. THE VEC-OPERATOR 

Let A be an m x n matrix and aj its jth column, then vec A is the mn x 1 

vector 

/a,\ 

vec A = (\U2) (12) 

\a. 

Thus the vec-operator transforms a matrix into a vector by stacking the col- 
umns of the matrix one underneath the other. Notice that vec A is defined 
for any matrix A, not just for square matrices. Also notice that vec A = vec B 
does not imply A = B, unless A and B are matrices of the same order. 

A very simple but often useful property is 

vec a' = vec a = a (13) 

for any column-vector a. The basic connection between the vec-operator and 
the Kronecker product is 

vec ab' = bOa (14) 

for any two column-vectors a and b (not necessarily of the same order). This 
follows because the jth column of ab' is bja. Stacking the columns of ab' thus 
yields b O a. 

The basic connection between the vec-operator and the trace is 

(vec A)' vec B = tr A'B, (15) 
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where A and B are matrices of the same order. This is easy to verify since 
both the left side and the right side of equation (15) are equal toE E aijbij. 

i J 

Let us now generalize the basic properties of equations (14) and (15). The 
generalization of (14) is the following well-known result. 

LEMMA 2. Let A, B, and C be three matrices such that the matrix product 
ABC is defined. Then, 

vec ABC = (C' 0 A) vec B. (16) 

Proof. Assume that B has q columns denoted bl, b2,... , bq. Similarly let 
e1, e2, . . ,eeq denote the columns of the q x q identity matrix Iq, so that 

B= E bje. Then, using equation (14), 
j= 1 

q q 
vec ABC =vec , Abje'C= vec (Abj)(C'ej)' 

j=1 j=1 
q q 

= Z (C'ej ( Abj) =(C' 0 A) E (ej & bj) 
j=1 j=1 

q 
= (C' 0 A) E vec bje' = (C' 0 A) vec B. 

j=1 

One special case of Lemma 2 is 

vec AB = (B'0 1, m) vec A = (B' 03 A) vec In = (Iq A) vec B, (17) 

where A is an m x n matrix and B is an n x q matrix. Another special case 
arises when the matrix C in equation (16) is replaced by a vector. Then we 
obtain, using equation (13), 

ABd = (d' 0 A) vec B = (A 0 d') vec B', (18) 

where d is a q x 1 vector. 
The equality (15) can be generalized as follows. 

LEMMA 3. Let A, B, C, and D be four matrices such that the matrix 
product ABCD is defined and square. Then, 

tr ABCD = (vec D')'(C' ( A) vec B = (vec D)'(A 0 C') vec B'. (19) 

Proof. We have 

tr ABCD = tr D(ABC) = (vec D')' vec ABC (by (15)) 
= (vec D')'(C' 0 A) vec B (by 16)). 
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The second equality is proved in precisely the same way starting from 
tr ABCD = tr D'(C'B'A'). 0 

Historical note. The idea of stacking the elements of a matrix in a vector 
goes back at least to Sylvester [36, 37]. The notation "vec" was introduced 
by Koopmans, Rubin, and Leipnik [13]. Lemma 2 is due to Roth [35]. 

4. THE COMMUTATION MATRIX Kmn 

Let A be an m x n matrix. The vectors vec A and vec A' clearly contain the 
same mn components, but in a different order. Hence there exists a unique 
mn x mn permutation matrix which transforms vec A into vec A'. This matrix 
is called the commutation matrix and is denoted Kmn. Thus 

Kmn vec A = vec A'. (20) 

Since Kmn is a permutation matrix it is orthogonal, i.e., Knn = Km,'. Also, 
premultiplying equation (20) by Knm gives K nmKmn vec A = vec A so that 
KnmKmn = imnn Hence, 

Km = KmK1 =Knm (21) 

Further, using equation (13), 

Kni = Kin = In- (22) 

The key property of the commutation matrix (and the one from which it 
derives its name) enables us to interchange ("commute") the two matrices of 
a Kronecker product. 

LEMMA 4. Let A be an m x n matrix and B a p x q matrix. Then 

Kpm(A (0 B) = (B (0 A)Kqn. (23) 

Proof. Let X be an arbitrary q x n matrix. Then, by repeated application 
of equations (16) and (20), 

Kpm(A 0 B) vec X = Kpm vec BXA' = vec AX'B' 

= (B 0 A) vec X' = (B 0 A)Kqn vec X. 

Since X is arbitrary the result follows. 

Immediate consequences of Lemma 4 are 

Kpm(A 0 B)Knq= B 0 A (24) 
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and 

Kpm(A O b) = b b A, Kmp(b ? A) = A O b, (25) 

where b is a p x 1 vector. 
All these properties follow from the implicit definition (20) of the commuta- 

tion matrix. The following lemma gives an explicit expression for Kmn which 
is often useful. 

LEMMA 5. Let Hij be the m x n matrix with 1 in its ijth position and 
zeroes elsewhere. Then 

m n 
KmnZ = ZE (Hij () Hij). (26) 

i=l j=l 

Proof. Let X be an arbitrary m x n matrix. Let ei denote the ith column 
of Im and uj the jth column of I, so that Hij = eiu'. Then 

X'= InX'Im( UjU2)x'(Z eueu) 

= Z uj(uJX'ei)e = uj(e'Xuj)e 
ii i i 

= Z(ujei)X(uje) = Y H'jXHj. 
iJ i i 

Taking vecs we obtain 

vec X' = vec H'JXH'j = (Hij 0 H'j) vec X, 
iJ iJ 

using equation (16). The result follows. 

Lemma 5 shows that Kmn is a square matrix of order mn, partitioned into 
mn submatrices each of order n x m, such that the ijth submatrix has unity 
in its jith position and zeros elsewhere. For example, 

1 0 10 0 0 0 

0 0'1 0 0 0 

K23 = - -- (27) 23 7777 0 0 
0 0 0 1 0 0 

\O O I O I O 1/ 
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The explicit form (26) of Kmn enables us to find the trace and the deter- 
minant of Kmn, 

LEMMA 6. The trace of the commutation matrix is 

tr Kmn = 1 + gcd(m -1, n-1), (28) 

where gcd(m, n) is the greatest common divisor of m and n; its determinant is 

IKmnI = (- 1)(1/4)mn(m 
- 1)(n - 1) (29) 

Proof. We shall only prove the case m = n. (For a proof of the more dif- 
ficult case m = n, see Magnus and Neudecker [17, Theorem 3.1].) Let ej be 
the jth column of In. Then, from equation (26). 

n n 

tr K = tr E (eiej 0 eje) = E tr (eiej 0 eje') 
i=1 j=1 i 

= Z (tr eiej)(tr eje) = E = n, 
iJ iJ 

where bij = 0 if i 0 i, bi = 1. Since K.n is real, orthogonal and symmetric, 
it has eigenvalues + 1 and -1 only. (The eigenvalues of Km", m : n, are, in 
general, complex.) Suppose the multiplicity of - 1 is p. Then the multiplicity 
of + 1 is (n2 - p), and 

n = tr Knn = sum of eigenvalues of Knn =-p + n2 - p = n2 - 2p, 

so that p = 4n(n - 1). Hence 

|Knnl =(1), = -)(1 /2)n(n - 1) = _ )(1 /4)n2(n - 1)2 

An important application of the commutation matrix is that it allows us 
to transform the vec of a Kronecker product into the Kronecker product of 
the vecs, a crucial property in the differentiation of Kronecker products. 

LEMMA 7. Let A be an m x n matrix and B a p x q matrix. Then 

vec (A 0 B) = (In 0 Kqm 0 Ip)(vec A (0 vec B). (30) 

Proof. Let ai (i = 1, . . . , n) and bi (j = 1,... , q) denote the columns of 
A and B, respectively. Also, let ei (i = 1, . . . , n) and uj (j = 1, . . . , q) denote 
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the columns of In and Iq' respectively. Then we can write A and B as 

n q 

A= aie,, B= bju'j, 
i=1 j=1 

and we obtain 

n q 
vec (A 09 B) = E vec (aiei (0 bju[) 

i=1 j=1 

= vec (ai &S bj)(ei (S uj)' = (ei ( uj ( ai ( bj) 
iJ ij 

= Z(In 0 Kqm 0 Ip)(ei 0 ai 0) uj 0 bj) 

= (In 0 Kqm 0 ,) vec 
aie') (z) vec bju9)} 

= (In 0 Kqm (0 Ip)(vec A 0 vec B). U 

In particular, by noting that 

vec A 0 vec B = (Inm 0 vec B) vec A = (vec A 0g Iqp) vec B, 

using equation (5), we obtain 

vec(A 0 B) = (In g G) vec A=(H Ip) vec B, (31) 

where 

G = (Kqm 0 Ip)(I1. 0 vec B), H = (In 0 Kqm)(vec A 0 - Iq) (32) 

Historical note. The original interest in the commutation matrix focussed 
on its role in reversing ("commuting") the order of Kronecker products 
(Lemma 4), a role which seems to have been first recognized by Ledermann 
[14] and Murnaghan [21, pp. 68-69] while Vartak [40] generalized 
Murnaghan's result to rectangular matrices. Tracy and Dwyer [38] redis- 
covered the commutation matrix and based their definition on the fact that 
Kmn is the matrix obtained by rearranging the rows of Imn by taking every 
mth row starting with the first, then every mth row starting with the second, 
and so on. (For example, the rows of K23 are rows 1, 3, 5, 2, 4, and 6 of I6.) 

The fruitful idea of defining Kmn by its transformation property (20) comes 
from Barnett [3], and is the definition adopted in this paper. See also Pollock 
[31, p. 72-73]. 

Among the many alternative names of the commutation matrix we men- 
tion permutation matrix, permuted identity matrix, vec-permutation matrix, 
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shuffle matrix, tensor commutator, and universal flip matrix. Alternative no- 
tations for Kmn include Em n, x Umxn n,m' I I(m) In,m, and (T. 

Lemma 4 goes back at least to Ledermann [14]. Concise proofs are given 
by Barnett [3], Hartwig and Morris [8], and Magnus and Neudecker [17]. 
Lemmas 5 and 6 are due to Magnus and Neudecker [17], and Lemma 7 to 
Neudecker and Wansbeek [26]. For a discussion of the characteristic poly- 
nomial of the commutation matrix, see [8] and [7]. 

For further reading on the commutation matrix we recommend Hartwig 
and Morris [8] , Balestra [2], Magnus and Neudecker [17], Henderson 
and Searle [10], and Neudecker and Wansbeek [26]. 

5. THE MATRIX Nn 

Closely related to the commutation matrix is the n2 x n2 matrix 

n= 2(In2+ Knn) (33) 

This matrix is symmetric and idempotent, 

Nn = Nn = Nn, (34) 

and, since tr Knn = n, its trace (and hence its rank) is easily shown to be 

r(N,,) = tr N. = -ln(n + 1). (35) 

The matrix N. transforms an arbitrary n x n matrix A into the symmetric 
matrix '(A + A'): 

N vec A = vec I(A + A'). (36) 

Of course, if A is symmetric to begin with, the transformation has no effect. 
(This shows again that Nn must be idempotent.) 

Further properties of Nn include 

NnKnn = Nn = KnnN (37) 

and, for any two n x n matrices A and B, 

Nn(A 0 B)Nn = NA(B 0 A)Nn, (38) 

NJ(A B + B 0 A)Nn = Nn(A 0 B + B 0 A) = (A 0 B + B 0 A)Nn, (39) 

Nn(A 0 A)Nn = Nn(A (0 A) = (A 0 A)Nn, (40) 



168 JAN R. MAGNUS AND H. NEUDECKER 

and 

Nn(A 0 b) = Nn(b 0 A) = '(A 0 b + b 0 A), (41) 

for any n x 1 vector b. 
The explicit form of Nn is easily derived from Knn. For example, for n = 2 

and 3, we have 

I 0 o o o o oo o o\ 
10 00 0 010 0 0 

0 0 0 0 00 

1 0 0 0'0 00''02 o o I o o 11o o oX 

2 0 0 1 1 l 30 0 0 (42) 2 ~~~~~00 0 0 N=0 0 ol 1 0 0 02 (2 
220 0 00- - - - 010II 0 ''0 

010 1 ? ? 2???2 212 
0 0 0 0 0 -ifI 0 
0 0 01 0 O I 0 0 1 

Historical note. The matrix Nn was introduced by Magnus and Neudec- 
ker [18, p. 424]. 

6. THE COMMUTATION MATRIX AND THE 
WISHART DISTRIBUTION 

Somewhat unexpectedly, the commutation matrix also plays a role in dis- 
tribution theory, especially in normal distribution theory. This role is based 
on the following result. 

LEMMA 8. Let u be an n x 1 vector of independent and standard normally 
distributed random variables U1,... Un, that is, u V(O, In). Then 

1*(u 0D u) = 2Nn, (43) 

Note. In the scalar case n= 1 we find ru2 = 2. Formula (43) gives a 
natural generalization of this result. 

Proof. Let A be an arbitrary n x n matrix and let B = (A + A')/2. Let T 
be an orthogonal n x n matrix such that T'BT = A, where A is the diagonal 
matrix whose diagonal elements Al, . . ., An are the eigenvalues of B. Let 
v = T'u with components vl,... , vn. Then, 

n 
u'Au = u'Bu = u'TAT'u = v'Av = E iv. 

i = 1 
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Since v YX(O, I), it follows that v,v. . 
2 

, are independently distributed 
with (vi) = 2, so that 

Yiu'Au) = 'V ( &i 1{v) = A 3{2(1v3) = 2 tr A2 

= 2 tr B2 = tr A'A + tr A2 = (vec A)'(I + K,n) vec A, 

using equation (15). Also, since u'Au = vec u'Au = (u (0 u)' vec A, 

'V(u'Au) = V((u (0 u)' vec A) = (vec A)'(Yu 0 u) vec A. 

Hence, 

(vec A)'('*"u 0 u) vec A = (vec A)'(I + Knn) vec A 

for every n x n matrix A. The result follows. 

We can generalize Lemma 8 by considering normal random variables 
which are not necessarily independent or identically distributed. This leads 
to Lemma 9. 

LEMMA 9. Let x --X(u,V) where V is a positive semidefinite n x n 
matrix. Then 

V(x 0 x) = 2N,(V ( V + V ( t' + '0V). (44) 

Proof. We write x = V1/2u + i with u A(O,In), so that 

x x X = V1/2u 0 V"/2u + V1/2u 0 u + It t V1/2u + u (D I 
= (V1/2 V1/2)(u (Ou) + (I + K.n)(V1/2u (8 It) + i (0 k 

= (V1/2 V1/2)(u (gu) + (I + Kjn)(V/2 (D 0,)u + p &)U, 

using equations (25) and (5). Since the two vectors u 0 u and u are uncorre- 
lated with r(u 0 u) = I + Knn and *(u) = In, we obtain 

x( & ) - V{(V1/2 VI/2)(U 0 U)} + Y {(I + K..)(Vl2 0 j)u} 

= (V1/2 0 V1/2)(I + Knn)(V1/2 0 V1/2) 

+ (I + Knn)(V /2 0g ,)(Vl/2 0 4)(I + Knn) 
= (I + Knn)(V 0 V) + (I + Kn.){V 0 ,'ii' + Knj(yy' 0 V)} 
= (I + Knn)(V 0 V + V 0 ,u,' + ,uOi' 0 V), 

using equation (23) and the fact (implied by (37)) that (I + Knn)K = I + Kn. 
U 
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Let us now consider k random n x 1 vectors Yl..., Yk, distributed inde- 
pendently as 

Yi --/V(pi, V), (i = 1, . ,k). 

The joint distribution of the elements of the matrix 

k 

S = E iY 
i = 1 

is said to be Wishart with k degrees of freedom and is denoted by Wn(k, V, M), 
where M is the k x n matrix 

M = (l, Y2, - , YJ 

(If M = 0 the distribution is said to be central.) The following lemma gives 
the mean and variance of the (noncentral) Wishart distribution in a compact 
and readily usable form. 

LEMMA 10. Let S be Wishart distributed W(k, V, M), V positive semi- 
definite. Then, 

eS = kV + M'M (45) 

and 

Y7 vec S = 2N,{k(V 0 V) + V 0 M'M + M'M ? V}. (46) 

k 

Proof. We first note that = M'M. Then 

S = g YiYi= OYiYi= Z(V + pip) = kV + M'M, 
i i 

and 

Y" vec S = 1' (vec = < (z Yi 0 Yi) = Y 2Iiy 0 
y/) 

= E (I + K,n)(V 0 V + V (0 Yiji + gig 0 V) 

=(I + Knn){k(V 0 V) + V 0 M'M + M'M 0 V}, 

using equation (44). U 
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We note in passing the following relationship between the covariance ma- 
trices of a noncentral Wishart matrix and its central counterpart. Let S1 be 
Wishart distributed Wj(k, V, M) and let SO be Wishart distributed Wj(k, V, 0). 
Then, using equation (46), 

'F vec SO <, '* vec S, (47) 

in the sense that the difference between the two covariance matrices of 
vec SO and vec S, is negative semidefinite. For a generalization of this result, 
see Problem 86.2.4 in this issue. 

Historical note. The results in this section are taken from Magnus and 
Neudecker [17], but the proofs are somewhat simplified. More general re- 
sults can be found in [17] and [26]. In the latter paper it is shown, inter 
alia, that the normality assumption in Lemma 8 is not essential. More pre- 
cisely, if u is an n x 1 vector of independent random variables u1,.. u, 
with gui = 0, &U? = U2, &U = 4, then 

*(u 0 u) = A(2N, + y E (E,0 Eii)) (48) 

where y = (f4/i4)-3 (the kurtosis) and Eii is the n x n matrix with 1 in its 
ith diagonal position and zeros elsewhere. 

7. SYMMETRY: THE DUPLICATION MATRIX Dn 

Let A be a square n x n matrix. Then v(A) will denote the jn(n + 1) x 1 vec- 
tor that is obtained from vec A by eliminating all supradiagonal elements 
of A. For example, if n = 3, 

vec A = (a, ja2ja3ja12a22a32a13a23a33), 

and 

v(A) = (a,1a21a3ja22a32a33)'- 

In this way, for symmetric A, v(A) contains only the distinct elements of A. 
Since the elements of vec A are those of v(A) with some repetitions, there 
exists a unique n2 x I n(n + 1) matrix which transforms, for symmetric A, 
v(A) into vec A. This matrix is called the duplication matrix and is denoted 
Dn Thus, 

Dnv(A) = vec A (A = A'). (49) 



172 JAN R. MAGNUS AND H. NEUDECKER 

Let A = A' and Dnv(A) = 0. Then vec A = 0, and so v(A) = 0. Since the sym- 
metry of A does not restrict v(A), it follows that the columns of D. are 
linearly independent. Hence Dn has full column-rank 4n(n + 1), D'D" is non- 
singular, and D+, the Moore-Penrose inverse of D, equals 

Dn+ = (D'D,) - 1D' (50) 

For n = 3, we have 

1 0 01 00 0 1 0 010 010\ 
I II 0 1 0 0 0 0 0 0 01 0 

o 1 ~O 1 02 010 0 0 1 1 lo 0 0 0 0 ? 

0 1 0 0 0 0 ''0 0 0 o 

I I ~~~~~~~~21 
D3= 0 0 010 10 O , 0 0 0 1 0 1 (01) 

0__0_0_0_1__ ?__?_1?_0 

0 0 10 0 0 0 0 10 01 
00100 0 0 0 1l ? ? ? 0?20 

0 O OI I I 0 0 0 I 1 

Some further properties of Dn are easily derived from its implicit definition 
(49). For symmetric A we have 

KnnDnv(A) = Knn vec A = vec A = Dnv(A) 

and 

NnDnv(A) = Nn vec A = vec A = Dnv(A). 

Again, the symmetry of A does not restrict v(A), so that 

KnnDn = Dn = NnDn- (52) 

Also, from equations (50) and (52), 

Dn+K = = DntN, (53) 

and 

n = I(1/2)n(n+1) n = Nn( 

The first of the two equalities in equation (54) is an immediate consequence 
of (50), while the second follows from NnDn = Dn (see (52)).1 We see that 
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N, is just the projection matrix D,,(D'D,,)- 'D; its action is to project onto 
the column space of D, i.e., the linear subspace in Rn2 representing the set 
of all symmetric n x n matrices. 

Finally we obtain 

n vec A = yv(A + A') (55) 

for any n x n matrix A. This follows by letting B = '(A + A') and observing 
that 

D+ vec A = D,+N, vec A = D'+ vec B = D'+D v(B) = v(B) 

using equations (53), (36), (49), and (54). 
Much of the interest in the duplication matrix is due to the importance 

of the matrices D +(A 0 A)D, and DJ(A 0 A)D, whose properties we shall 
now investigate. We first prove Lemma 11. 

LEMMA 11. Let A be an n x n matrix. Then, 

D,D,+(A 0 A)D, = (A 0 A)D, (56) 

D,+(A 0 A)D D,+ = D,+(A 0& A), (57) 

and, if A is nonsingular, 

(D,+(A 0 A)D)- 1 = D,+(A- 0 A- 1)D. (58) 

Proof. The first two equalities follow from D,D+ = N,,, N(A A) = 

(A ? A)N, N Dn = D, and D +N, = D +. (See equations (54), (40), (52) and 
(53).) The last equality follows by direct verification since 

D,,(A 0 A)D D + (A 0 A')Dn = D + (A 0 A)(A 0 A')D, 
=Dt+D =I, 

using equations (56) and (54). 

In fact, the property D D +(A 0 A)Dn = (A 0 A)D,, for arbitrary square A 
is the Kronecker counterpart to D DI+ vec A = vec A for symmetric A, just 
as the property Knn(A 0 A) = (A 0 A)K,n is the Kronecker counterpart to 
Knn vec A = vec A'. We see this immediately if we let X be symmetric and sub- 
stitute the symmetric matrix AXA' for X in DnD + vec X = vec X, yielding 

D D +(A (0 A)DAv(X) = (A (0 A)Dnv(X). 
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Next we show that if A has a certain structure (diagonal, triangular), then 
D+(A 0 A)Dn often possesses the same structure. 

LEMMA 12. Let A be a diagonal (upper triangular, lower triangular) 
n x n matrix with diagonal elements all, a22, . . . , ann. Then the In(n + 1) x 
2n(n + 1) matrix D+(A( 0A)Dn is also diagonal (upper triangular, lower 
triangular) with diagonal elements aiiajj (1 j < i < n). 

Proof. Let Eij be the n x n matrix with 1 in the ijth position and zeros 
elsewhere, and define 

Tij = Eij + Eji - 

Then, for i > j, 

D (A 0 A)D v(Eij) = D+(A 0 A)D 
v(Tij) 

= Dn+(A 0 A) vec Tij = D+ vec ATLjA' = v(ATjjA'), 

and therefore, for i > j and s > t, 

(v(E,,))'D,t (A 0 A)D,v(Eij) = (v(E,,))'v(ATjjA') 
= (ATijA')st = asiatj + asati -bijasiati 

In particular, if A is upper triangular, we obtain2 

(a,iatj ( t -< s j = i or t <, j < s <, i), 
(v(E,,))'D +(A (0) A)D v(Eij) = asi atj + asjati (t < s j < i), 

Lo (otherwise), 

so that D+(A 0 A)Dn is upper triangular if A is, and 

(v(Eij))'D +(A 0 A)D v(Eij) = aiiajj (I < i) 

are its diagonal elements. The case where A is lower triangular is proved 
similarly. The case where A is diagonal follows as a special case. a 

Lemma 12 is instrumental in proving our main result concerning the 
matrix D +(A 0& A)D. 

LEMMA 13. Let A be an n x n matrix with eigenvalues 1, ~2,... 
Then the eigenvalues of the matrix D +(A (0 A)D. are .jAj(l <, i < j < n), and 
its trace and determinant are given by 

tr (D +(A (0 A)Dn) = 2 tr A2 + 2(tr A)2 (59) 
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and 

ID+ (A 0 A)D nI = JAI (60) 

Proof. By Schur's Theorem [4, p. 202] there exists a nonsingular matrix 
S such that S- 'AS = M, where M is an upper triangular matrix with the 
eigenvalues 21, . . ., Xn of A on its diagonal. Thus 

D,+(S'- S- 
')D,D+(A 

0 A)D D+(S 0 S)Dn = D+(M 0 M)Dn. 

Since D,+(S- 1 ( S- 5)D is the inverse of D +(S (0 S)Dn (see equation (58)), 
it follows that D+ (A 0D A)Dn and D+ (M 0 M)Dn have the same set of eigen- 
values. By Lemma 12, the latter matrix is upper triangular with eigenvalues 
(diagonal elements) Xj)j (1 < j < i < n). These are therefore the eigenvalues 
of D(A 0 A)Dn too. 

The trace and determinant, being the sum and the product of the eigen- 
values, respectively, are 

tr D+(A 0 A)Dn = Z 
RiAj 
X =42Z 

+ I 
? 4 jZ ) 

i j i ij 

= 1 tr A2 + 1(tr A)2, 

and 

ID+ (A 0 A)DI =HI=H = n + 1. 

Let us now establish the nature of the nonsingular 4n(n + 1) x 2n(n + 1) 
matrix D'Dn. Let B = (bij) and C = (cij) be arbitrary symmetric n x n ma- 
trices, and let Eii be the n x n matrix with 1 in the ith diagonal position and 
zeros elsewhere. Then 

(v(B))'D'Djv(C) = (vec B)'vec C = bijc 
ii 

= 2 Y bijcij- i biicii 
i j i 

= 2(v(B) )'v(C) - ((v(B))'v(Ejj))( (v(Eii) )'v(C)) 

= (v(B))' (21 - v(E1j)(v(Ejj))') v(C), 

so that 

n 

D'D = 21(/2)f(fl?)- Z v(Ejj)(v(Ejj))'. (61) 
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Hence, D'Dn is a diagonal matrix with diagonal elements 1 (n times) and 
2 (-n(n - 1) times) and determinant 

|D'Dn= 2(1/2)n(n - 1) (62) 

As a consequence of (61) we have for any n x n matrix A, 

D'D v(A) = v(2A - dg A). (63) 

Also 

D' vec A = v(A + A'- dg A). (64) 

Here dg A denotes the diagonal matrix with the diagonal elements of A on 
its diagonal. The proof of (64) follows by premultiplying both sides of (55) 
by D'Dn and using (63). 

With the help of (62) we can now prove Lemma 14. 

LEMMA 14. Let A be an n x n matrix. Then 

IDJ(A A)Dn - 21/2)n(n - 1) In+ n (65) 

and, if A is nonsingular, 

(D' (A (9) A)D - 1 = D +(A - 1 (E) A- ')D+ . (66) 

Proof. Since, from (56), 

DJ(A 0 A)Dn = (D'D )(D+(A (0 A)Dn), 

(65) follows from (62) and (60), and (66) follows from (58) and (50). U 

Historical Note. The idea of putting into a single vector just the distinct 
elements of a symmetric matrix goes back at least to Aitken [1] in 1949. 
Properties of the duplication matrix were studied, inter alia, by Tracy and 
Singh [39], Browne [5], Vetter [41], Richard [33], Balestra [2], Nel [22], 
and Henderson and Searle [9]. For further properties of the duplication 
matrix the reader should consult Magnus and Neudecker [18]. 

8. A GENERALIZATION: L-STRUCTURED MATRICES 

The class of symmetric matrices is just one example of a much wider class 
of matrices: L-structures. An L-structure (L stands for linear) is the totality 
of real matrices of a specified order that satisfy a given set of linear restric- 
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tions. To define the concept of an L-structure more formally, let 9 be an s- 
dimensional subspace (or linear manifold) of the real vector space mn, and 
let d1, d2,. . . , ds be a set of basis vectors for 9. The mn x s matrix 

A-=(dl, d2, . , dj) 

is called a basis matrix for 9, and the collection of real m x n matrices 

L(A) = {X I X E Rm x n vec X E 9} (67) 

is called an L-structure; s is called the dimension of the L-structure. A basis 
matrix is, of course, not unique: if A is a basis matrix for 9, then so is AE 
for any nonsingular E. This fact suggests that it might be more appropriate 
to regard L as function of 9 rather than A. It is, however, the basis matrix 
A which is relevant in applications such as matrix equations and Jacobians, 
so we find it convenient to retain the definition (67) as it stands. 

The class of real symmetric n x n matrices is clearly an L-structure, the 
linear restrictions being the 4n(n - 1) equalities xij = xji, so that the dimen- 
sion of the L-structure is ln(n + 1). One choice for A would be the duplication 
matrix Dn. Other examples of L-structures are (strictly) triangular, skew- 
symmetric, diagonal, circulant, and Toeplitz matrices. 

Now consider a member A of the class of real m x n matrices defined by 
the L-structure L(A) of dimension s. Since A E L(A), the vector vec A lies in 
the space 9 spanned by the columns of A, and hence there exists an s x 1 
vector, say *(A), such that 

AO(A) = vec A. (68) 

Since A has full column-rank s, we obtain 

A A = Is, (69) 

which implies that *(A) can be solved uniquely from (68), the unique solu- 
tion being 

*(A) = A+ vec A (A E L(A)). (70) 

Thus, given the choice of A, / is uniquely determined by (68). (Of course, a 
different choice of A leads to a different Q.) In the case of symmetry, the 
choice of the duplication matrix for A determines the choice of v(.) for Q. 
From (55) we have, for arbitrary A, D+ vec A = lv(A + A'); for symmetric 
A this becomes D + vec A = v(A). 

Of special interest is the symmetric idempotent s x s matrix N. defined as 

NA = AA+. (71) 
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(In the case of symmetry, this is the matrix N.) If we substitute A+ vec A for 
*(A) in (68) we obtain 

NA vec A = AA' vec A = vec A (72) 

for every A E L(A). We shall show that the matrix NA is invariant to the 
choice of A. Let A and A be two basis matrices for 9. Since A and A span 
the same subspace, there exists a nonsingular s x s matrix E such that A = AE. 
Also, 

(AE)(AE) + = (AE) + '(AE)' = (AE) +'E'A' 
= (AE)+'E'A'AA + = (AE)+'(AE)'AEE-'A+ 
= (AE)(AE)+(AE)E-'A+ = AEE-'A+ = AA+. 

Hence NA is invariant to the choice of A. 
Now suppose that A and B are square matrices of orders n x n and m x m, 

respectively, possessing the property 

BXA' E L(A) (73) 

for every X E L(A). (For example, in the case of (skew-)symmetry, AXA' is 
(skew-)symmetric for every (skew-)symmetric X; in the case of (strict) lower 
triangularity, if P and Q are lower triangular, PXQ is (strictly) lower triangular 
for every (strictly) lower triangular X.) Then, 

AA' (A (0 B)A = (A 0 B)A, (74) 

and, if A and B are nonsingular, 

(A+(A 0 B)A)- = A+(A- 1 B')A (75) 

and 

(A'(A 0 B)A)<- =A+(A0 B- ')A + (76) 

To prove (74) let X E L(A). Then 

AA+(A 0 B)Af(X) = AA+(A 0 B) vec X = AA+ vec BXA' 
= vec BXA' = (A 0 B) vec X = (A 0 B) Af(X). 

The restriction X E L(A) does not restrict V(X); hence (74) follows. Property 
(74) together with (69) implies (75), since 

A+(A-1 (' B-')AA+(A (0 B)A = A+(A-1 (' B-')(A (0 B)A = A+A = I, 

while (76) also follows from (74) and (69), using the symmetry of AA +. 
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Examples of L-structures. The following six L-structures are most likely 
to appear in practical situations. Each defines a class of square matrices, say 
of order n x n. The L-structures are (with their dimensions in brackets): (1) 
symmetric [n(n + 1)/2], (2) lower triangular [n(n + 1)/2], (3) skew-symmetric 
[n(n - 1)/2], (4) strictly lower triangular [n(n - 1)/2], (5) diagonal [n], and 
(6) circulant [n]. For n = 3 sensible choices for A are (with dots representing 
zeros): 

.1-'-- 111 
. . I . . I .. . . I . . I . 

Al =A 2 
. 1 11.. . I 

.~ ~ I * 1 . . 

. . 1 2 . . 1. 
?I-------1-- 

. . _1 

-1~ ~ . * ! 

*5 I * 6 A4 * 

Let A =(aij) be an arbitrary n x n matrix. We have already encountered 
the n2 x I vector vec A and the in(n + 1) x I vector v(A), which is obtained 
from vec A by eliminating all supradiagonal elements of A. We now define 
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the {n(n - 1) x 1 vector v,(A), which is obtained from vec A by eliminating 
the supradiagonal and the diagonal elements of A. For example, if n = 3, then 

vs(A) = (a2l, a3l, a32)'- (77) 

We also define the n x 1 vectors 

vd(A) = (a1l, a22, , a.)' (78) 

and 

v1(A) = (a,,, a21, , an1)'. (79) 

The vector vd(A) thus contains the diagonal elements of A; the vector v1(A) 
contains the first column of A. 

The +-vectors associated with the six above A-matrices are then 

#f1(A) = +2(A) = v(A), +3(A) = #4(A) = v,(A), 

05(A)= vd(A), 06(A)= v1(A). 

Historical note. Patterned matrices (with only equality relationships 
among their elements) were studied by Tracy and Singh [39] with the purpose 
of finding matrix derivatives of certain matrix transformations. Lower tri- 
angular (and symmetric) matrices were discussed by Magnus and Neudecker 
[18], and skew-symmetric, strictly lower triangular and diagonal matrices 
by Neudecker [25]. The present section is based on Magnus [16], who in- 
troduced the concept of an L-structure in the context of solving linear matrix 
equations where the solution matrix is known to be L-structured. See also 
Wiens [42]. 

9. MATRIX DIFFERENTIATION: FIRST DERIVATIVES 

Let f = (fJ,f2, .. , fj)' be a vector function with values in Rm which is 
differentiable on a set S in R'. Let afi(x)/axj denote the partial derivative of 
fi with respect to the jth coordinate. Then the m x n matrix 

( f1(x)/x ... af1(X)/WaX 
(80) 

fm(x)/x ... afm(x)/axn! 

is called the derivative or Jacobian matrix of f at x and is denoted af(x)/ax'. 
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The generalization to matrix functions of matrices is straightforward. Let 
F: S l-+m P be a matrix function defined and differentiable on a set S 
in RlXq. Then we define the Jacobian matrix of F at X as the mp x nq 
matrix 

a vec F(X) (81) 
O(vec X)' 

whose ijth element is the partial derivative of the ith component of vec F(X) 
with respect to the jth coordinate of vec X. 

We emphasize that (81) is the only sensible definition of a matrix derivative.3 
There are, of course, other ways in which the mnpq partial derivatives of F 
could be displayed [2, 34], but these other definitions typically do not pre- 
serve the rank of the transformation (so that the determinant of the matrix 
of partial derivatives is not the Jacobian), and do not allow a useful chain 
rule. These points are discussed in more detail by Pollock [32] and Magnus 
and Neudecker [19]. 

The computation of Jacobian matrices is made extremely simple by the 
use of differentials [24, 19]. The essential property here is that 

vec dF(X) = A(X) vec dX (82) 

if, and only if, 

a vec F(X) 
____F(X) = A(X). (83) 
3(vec X)' 

Thus, if we can find a matrix A (which may depend on X, but not on dX) 
satisfying (82), then this matrix is the Jacobian matrix. Some examples will 
show that the approach via differentials is short, elegant, and easy. 

Example (i). The linear matrix function Y = AXB where A and B are 
two matrices of constants. Taking differentials we have 

dY = A(dX)B, 

from which we obtain, upon vectorizing, 

vec dY = vec A(dX)B = (B' 0 A) vec dX. (84) 

Hence the Jacobian matrix is 

a vec Y 
= B'0 A. (85) 

O(vec X)' 
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If X is constrained to be symmetric, we substitute D dv(X) for vec dX in (84), 
where D is the duplication matrix. This gives 

vec dY = (B' 0 A)D dv(X), 

so that 

a vec Y 
____-(B' 0D A)D. (86) 

d(v(X))' 

Of course, we can also obtain (86) from (85) using the chain rule, since for 
symmetric X, 

a vec X_ 

=___ 
D. (87) O(v(X))' (7 

More generally, if X is L-structured, X E L(A), then the Jacobian matrix is 

(B' (0 A)A. 

Example (ii). The nonlinear matrix function Y = X- '. We take differen- 
tials, 

dY = dX-' =-X-'(dX)X- 

and vecs, 

vec dY = -((X')' 0 X 1) vec dX, 

thus leading to the Jacobian matrix 

a vec 
Y = (X'') 

? X- 1' (88) 
a(vec X) 

Again, if X is symmetric (L-structured), we postmultiply (88) by D (A, in 
general). 

Example (iii). The real-valued function +(X) = tr AX, where A is a matrix 
of constants. We have 

dj(X) = tr A dX = (vec A')' vec dX, 

so that the derivative is 

d(vec A')'. (89) 
a(vec X)' 
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(This is usually written as 04(X)/AX = A', which, in spite of its attractiveness, 
is not always commendable.) For symmetric X, we proceed as before and 
find, using (64), 

d___ -) 
= (vec A')'D = {v(A + A' - dg A)}', (90) 

where dg A is the diagonal matrix with the diagonal elements of A on its 
diagonal. 

10. MATRIX DIFFERENTIATION: SECOND DERIVATIVES 

Let O: S -* lR be a real-valued function defined and twice differentiable on 
a set S in R'. Let 020(x)10xj0xj denote the second-order partial derivative 
of 0 with respect to the ith and jth coordinates. Then the n x n matrix 

(020(X)/0xj0xj) is called the Hessian matrix of 0 at x and is denoted H4(x) 
or 024(x)/ax0x'. Since / is twice differentiable at x, Ho(x) is a symmetric 
matrix. 

Next, let us consider a real-valued function 0: S -[ R defined and twice 
differentiable on S c RX q. The Hessian matrix of b at X is then the 
nq x nq (symmetric) matrix 

H(X) 2 02D(X) (91) 
a vec X 8(vec X)'' 

whose ijth element is the second-order partial derivative of 0 with respect 
to the ith and jth coordinates of vec X. 

The computation of Hessian matrices is based on the property that 

d20(X) = (vec dX)'B(X)(vec dX) (92) 

if, and only if, 

HO(X) = 2(B(X) + B'(X)), (93) 

where B may depend on X, but not on dX. 

Example (i). The quadratic function 0(X) = trAXBX', where A and B 
are square matrices (not necessarily of the same order) of constants. Twice 
taking differentials, we obtain 

d2o(X) = 2 tr A(dX)B(dX)' = 2(vec dX)'(B' 0 A)(vec dX). (94) 
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The Hessian matrix is therefore 

a 214X) = ' A A.95 
a vec X 0(vec X)' =B'0A+B0 A'. ( 

If X is constrained to be symmetric, we have 

2ov(X) a(()) D'(B' 09 A + B 0& A')D. (96) av(X) a(v(X)) (6 

Example (ii). The real-valued function +(X) = tr X- . We have 

d+(X) = -tr X (dX)X' 

and therefore 

d2o(X) = -tr (dX- 1)(dX)X1 - tr X- l(dX)(dX- 1) 

= 2 tr X- 1(dX)X- 1(dX)X'- = 2(vec dX')'(X'-2 0 X-')(vec dX) 

= 2(vec dX)'K(X'- 2 0 X- 1)(vec dX), (97) 

so that the Hessian matrix becomes 

a2Xs(X) = K(X' 2 0 
X-' + X'-1 0 X-2). (98) 

a vec X a(vec X)' 

For symmetric X, we find 

a2o(X)= D'(X(2 0 X' + X' 0 X2)D 
av(X) a(v(X))' 

= 2D'(X'- 1 0 X-2)D, (99) 

using (52) and Lemma 4. 

11. THE EVALUATION OF INFORMATION MATRICES 

Of particular importance to econometricians is the evaluation of information 
matrices (and their inverse) in situations where positive definite matrices are 
arguments of the likelihood function and where, consequently, a proper treat- 
ment of symmetry is needed. Let 4> be a positive definite matrix of parameters 
to be estimated. Then two approaches are available. The first is to take ac- 
count of the symmetry by imposing the linear constraint (I - K) vec 4D = 0; 
the second is to insert the relationship vec D = Dv(O) into the likelihood 
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function. (Recall that v(?) contains the distinct elements of 4t, see Section 7.) 
Clearly the two approaches lead to the same result, but the latter treatment 
is, in our view, easier to apply. Let us give one example. 

Consider a sample of size m from the n-dimensional normal distribution 
of y with zero mean and positive definite covariance matrix (D. The loglikeli- 
hood function for the sample is 

Am(v(4D)) = -4nm log 2m - 4m log 1 - 4 tr J- 1Z, 

where 

m 
z = YiY 

i = 1 

Thus Am is a function of n(n + 1)/2 parameters. The first differential of Am is 

dAm = -m d log 101-1 tr (A) - ')Z - ' tr -1) dZ 
- 4m tr q- 1 d4D + 2 tr4Y- l(d4D)4Y 'Z 

= 4 tr (d4)I - 1(Z - mD)(D 

Now, since (D is a linear function of v(4D), we have d24) = 0 and hence the 
second differential of Am is 

d2Am = 4 tr (d4D)(dO -)(Z - m4') -1 

+ 4 tr (d4I)(D (dZ -m d4D)JY 
+ 2 tr (d4$)- (Z - m4D)(d4F- 

Taking expectations, and observing that &Z = m( and dZ = 0, we find 

2 m 
--d Am = - tr (dO)4O (d4D)0'. 2 

It is only at this stage of the computation that we need to introduce the 
duplication matrix D. We have, using (19) and (49), 

tr (dqO)q- l(d(D)O = (vec d4)'(4'- 0 8 0 - D')(vec db) 

(dv((D))'D'(0 -1 0D <- ')D dv(D), 

so that 

-G2 m 
- &d A~ - (dv(41) )'D'(4(1 0 4 ')D dv((D). (100) 

2 
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Hence the information matrix for v((F) is 'P'm = m'P, with v = 2D'(- (D-' 0 
4( ')D, and the asymptotic covariance matrix of the ML estimator for v(sI) 
is v - 1 = 2D + ((D 0 ()D +', using (66). 

Historical note. That symmetry conditions should be properly taken 
into account was emphasized by Richard [33] and Balestra [2]. The treat- 
ment in this section follows Magnus and Neudecker [18, Section 5] with 
some minor modifications. 

12. JACOBIANS INVOLVING L-STRUCTURES 

Let F: S -* R" 'P be a matrix function defined and differentiable on a set S 
in R' q If mp = nq, the Jacobian matrix defined in (81) is a square matrix. 
Its determinant is called the Jacobian (or Jacobian determinant) and is 
denoted by JF(X). Thus, 

JF(X) | 0 vec F(X) (101) JF 8 (vec X)' 

Example (i). The linear transformation F(X) = AXB, where X and F(X) 
are m x n matrices, and A and B are nonsingular matrices of constants of 
orders m x m and n x n, respectively. From (85) we know that the Jacobian 
matrix is B' 0 A, so that the Jacobian is 

JF(X) = IB' Al = AIniBim. (102) 

Example (ii). The nonlinear transformation F(X) = X-', where X is a 
nonsingular n x n matrix. The Jacobian matrix is given in (88) as -(X') -0 
X- , so that the Jacobian of the transformation is 

JF(X) = I-(X') ' (0 X1 I = (-_)njX -2n. (103) 

The evaluation of Jacobians of transformations involving a symmetric 
n x n matrix argument X proceeds along the same lines, except that we must 
now take into account the fact that X contains only 1 n(n + 1) "essential" 
variables. 

Example (iii). The linear transformation F(X) = AXA'. where X (and 
hence F(X)) are symmetric n x n matrices. Taking differentials and vecs, we 
have 

vec dF(X) = (A (0 A) vec dX. 

Since dX and dF(X) are symmetric, we obtain 

dv(F(X)) = Dn+(A 0D A)Dndv(X), 
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so that, 

JF(X) = |av((X)) n nD(A A)DI = AI (104) 

using (60). 

Example (iv). The inverse transformation F(X) = X-1 for symmetric non- 
singular X of order n x n. Again taking differentials and vecs, we obtain 

vec dF(X) =- (X- 0 X'-) vec dX, 

so that 

dv(F(X)) = -D +(X1 X - ')Dn dv(X). 

The Jacobian of this transformation then follows from (60): 

JF(X) = |v(F(X)) = I -D+(X- 1 X ')DI = (-j)(1/2)n(n? +1 XI(n+ +1) 

To evaluate the Jacobian matrix (and the Jacobian) of a transformation 
involving more general L-structures is straightforward. 

Example (v). The transformation F(X) = X'X, where X = (xii) is a lower 
triangular n x n matrix. From 

dF(X) = (dX)'X + X'dX, 

we obtain 

vec dF(X) = (X' 0 I) vec (dX)' + (I 0 X') vec dX 
= ((X' 09 I)Knn + I 0 X') vec dX 

= (I + K,n)(I 0 X') vec dX = 2N(I 0) X') vec dX. 

Now let L' be the A-matrix with the property that 

L'v(A) = vec A 

for every lower triangular n x n matrix A. Then, since dX is lower triangular 
and dF(X) is symmetric, we obtain 

dv(F(X)) = 2D+Nn(I 09 X')L' dv(X) 
= 2(DDn) -D'(I 0) X')L' dv(X), 
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using (53) and (50). The Jacobian matrix is therefore 

av(F(X)) =2DD -( 
(0) ),)= 2(DDnn) 1(Ln(I 0D X)Dn)' 

and its determinant is the Jacobian of the transformation. The determinant is 

Ov(F(X)) 
JF(X) = O(v(X))' = 2 i H X', (105) 

using (62) and Lemma 4.1(iii) of Magnus and Neudecker [18]. 

Historical note. A variety of methods has been used to account for the 
symmetry in the evaluation of Jacobians of transformations involving sym- 
metric matrix arguments, notably differential techniques (Deemer and Olkin 
[6] and Olkin [27]; induction (Jack [12]), and functional equations induced 
on the relevant spaces (Olkin and Sampson [28]). Our approach finds its root 
in Tracy and Singh [39] who used modified matrix differentiation results 
to obtain Jacobians in a simple fashion. Many further Jacobians of trans- 
formations with symmetric or lower triangular matrix arguments can be 
found in Magnus and Neudecker [18]; the matrix Ln introduced in example 
(v) is their so-called elimination matrix. Neudecker [25] obtained Jacobians 
of transformations with skew-symmetric, strictly lower triangular, or diago- 
nal matrix arguments, using the approach described here. We emphasize how- 
ever that ours is by no means the only approach to evaluate Jacobians. 
In particular when the matrix argument is not L-structured, but say or- 
thogonal, other methods are called for. Tensor and exterior algebra (and 
calculus) deal well with such and other cases (see Muirhead [20, p. 50-72] for 
an introduction to the subject), and have recently been extensively used by 
Phillips [29, 30] and Hillier [11]. 
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NOTES 

1. Let A be an idempotent symmetric n x n matrix, and B an n x r matrix such that AB = B. 
Then A = BB' if, and only if, A and B have the same rank. [Proof: Let C = A - BB'. Then 
CB = 0 and C is symmetric and idempotent. Hence r(C) = r(A) - r(B) and the result follows.] 

2. Sincej < i and t < s, we have to consider the following six cases: t < s < j < i, t S j < s < i, 
t <- - i < s,j < t < s < i, j < t < i < s, j < i < t < s. But since A is upper triangular, the last 
four of these yield zero or become special cases of the first two. Hence the only cases not 
yielding zero are t < s j < i and t j I< s < i, or equivalently t < s < j = i, t < s < j < i, and 
t <j < s < i. 
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3. The statement that (81) is the only sensible definition is perhaps too strong. Of course, if 
F(X) is a differentiable matrix function, then P{@ vec F(X)/a(vec X)'}Q, where P and Q are 
arbitrary permutation matrices, can also be taken as the definition of the Jacobian matrix of 
F at X. This simply corresponds to a different ordering of the functions fj (P vec F instead of 
vec F) and the variables x,, (Q' vec X instead of vec X). 
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