CHAPTER 10

Least-Squares Autoregression with
Near-unit Root

Jan R. MAGNUS and Thomas J. ROTHENBERG!

10.1 Introduction

In autoregressive models, assumptions about the initial conditions seem to mat-
ter a lot when one of the roots of the characteristic polynomial is near the unit
circle. In particular, the fixed start~up model (where the first few observations
are treated asymmetrically) behaves quite differently in small samples than the
stationary model which assumes that all the observations have the same distri-
bution.

In this chapter, we explore some implications for the sampling distributions
of least-squares estimates, test statistics, and forecasts in the leading case of the
first-order autoregressive model. This is accomplished by studying the limiting
behaviour of the statistics, for fixed sample size, as the autoregressive parameter
approaches unity. When regressions are fitted without intercept, the stationary
and fixed start-up models produce strikingly different sampling distributions
for the least-squares estimator as the autoregressive parameter tends to one
in absolute value. When regressions are fitted with intercept, the two models
produce similar sampling properties when the autoregressive parameter tends
to plus one, but very different properties when the parameter tends to minus
one.

Previous Monte Carlo and numerical integration calculations have demon-
strated that least-squares estimates, test statistics and forecasts in autoregres-
sive time-series models exhibit unusual features when one of the roots of the
characteristic polynomial lies near the unit circle. In particular, the traditional
approximate distribution theory based on normality is often unsatisfactory. Fur-
thermore, small differences in the initial conditions sometimes yield noticeable
differences in the sampling distributions even when the number of observations
is rather large. See, e.g., Phillips (1977, 1987), Evans and Savin (1981, 1984)

1The first version of this paper was completed in July 1988 when both authors were at the
London School of Economics.
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an‘c.l Magnus and Pesaran (1989, 1991). In this chapter, we provide further ev-
idence and offer some simple explanations for these phenomena in the leading
case of the AR(1) model

yt=a+ﬂyt_1+aut, t=1,2,..., (1)

where {u;} is a sequence of independent standard normal random variables.

We shall examine some statistics obtained from a least-squares regression
of y; on its lagged value, using observations yg,...,yr. Section 2 considers
the case where « is known to be zero and the regression is performed without
an intercept. Section 3 considers the case where @ may be nonzero and the
regression contains an intercept. The behaviour of the sampling distributions
turns out to be rather different in the two cases when J is near one. The sampling
distributions are also sensitive to the specification of the initial observation yg.
We shall assume that yo has the representation

Yo = p =+ dug, (2)

where g is standard normal and independent of {u;,ug,...}

Specification (2) covers a number of possibilities that have been discussed
in the literature. If, for example, o = (1 — #)p and o2 = (1 — 52)§2, we have
the stationary model; that is, the {y;} are a stationary stochastic process with
expectation p and variance 62. Alternatively, if 6 = 0 and p = ¢, the frst
observation yq is the constant ¢; Evans and Savin call this the “fixed start-up”
model. If § = o,u = o+ e, and (1) also holds for ¢ = 0, then the value of
y preceding Yo is the constant ¢; this is another version of the fixed start-up
assumption, used by Fuller (1976) and by Magnus and Pesaran (1989, 1991).
(Note that Fuller and Magnus and Pesaran assume that the sample consists of
observations y1,...,yn. Hence our T corresponds to their n — 1.)

Our approach will be to investigate the limiting distributions of the least-
squares estimates, test statistics and forecasts, for fixed sample size, as 3 tends
to one. Although some large-sample approximations will be employed to sim-
plify the formulae, our main results are valid for all sample sizes. Indeed, one
of our main purposes is to discover the small-sample properties of least-squares
statistics when /7 is close to one. Asymptotic analysis of dynamic models when
the autocorrelation coefficient tends to unity has been employed previously by
Chipman (1979) and Jensen (1986). Our results can be viewed as a generalisa-
tion of those found by Jensen.

The model represented by (1) and (2) is characterised by the five parameters
a,B,0?% u and 5. When examining sequences of models as 3 approaches one,
we must specify the behaviour of the other parameters. For example, in the
stationary case, o and o2 could be held fixed while 4 = a/(1 — ) and 6§ =
o/+/1 — 3% both tend to infinity. Alternatively, u and § could be held fixed
while @ and o tend to zero. In the nonstationary case, all sorts of dependency
of @,0% 1 and § on f could be examined. Luckily, not all of the possibilities
lead to different results. In fact, only a few basic forms of limiting behaviour
for the least-squares statistics turn out to be possible.



10.2 Regression without Intercept

When « is zero and the regression has no intercept, the least-squares estimates
of B and o2 based on yg,%1,...,yr can be written as

B= Zt Yr—1t

Zt Yr—1Ut .
Y11V (3
) ytz—l )

Sy RPRA L
Zt?ltz—l
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where ), represents summation from 1 to T Also of interest are the ¢-ratio for
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and the error in the s-period ahead forecast,
~ " 8—1 .
erys = Boyr — yrys = (8 = B)yr — 0 Y Buryei. (6)
=0

When o is specified as in (2), the difference equation (1) may be solved as

t—1

ye =B (u+0uo) + oy fuy  (£20) (7)

i=0

where the summation term is taken to be zero when ¢t = 0. For any f, the
behaviour of y; (and hence that of B,dz,tg and er,.; depends on the relative
magnitudes of the three parameters u,§ and 0. In fact, when considering the
limit as @ tends to one, there are three possible cases:

Case 1: As [ approaches one, both u/§ and o/§ approach zero. (This occurs,
for example, when g = 0 and 0% = §2(1 — 4?) so that the y; are stationary.)
Then, as § — 1,

y/6 = ug forall ¢>0.

Case 2: As (B approaches one, o/u approaches zero and §/u approaches the
constant 8. (This occurs, for example, when u and § are nonzero constants and
0% = §2(1— f?); the y; are variance stationary but not mean stationary.) Then,
as B — 1,
w/p—1+0uy forall t>0.

Case & As 3 approaches one, u/oc approaches the constant i and 6/c ap-
proaches the constant §. (This occurs, for example, in either form of the fixed
start-up model.) Then, as 8 — 1,

Y/ — G4 Gug +uy + -+ ug



Clearly, the limiting behaviour in case 3 (where y; behaves like a random walk) is
quite different from that in cases 1 and 2 (where y; does not depend on ¢). This
carries over to the distributions of the least-squares statistics. Taking limits in
equations {3)-(6), we find the following extensions of a result given in Jensen
(1986, p. 139).

Proposition 1. In case 1, as § tends to one, B converges in probability to one.
Furthermore, for fixed T,

T1/2—-
L Cauchy,

@) T(5-p)E

Uo

(b) (T —-16’—2 Z'Ltt—-u x2(T - 1),
t

~ Student (T — 1),

(C) tﬁ — \/T(T— 1)%
2

ETts _, _ i~ 5
(d) i (urgr + -+ + Urys) + 8T N(O,s+T),

where 4 =T713", u;.

Proposition 2. In case 2, as 3 tends to one, 8 converges in probability to one.
For fixed T,

T/?g

14 6ug’

T2 - B)E

The statistics (T—1)62 /02, tg, and ers/0 approach the same random variables
and therefore have the same limiting distributions as in Proposition 1.

The random walk case is considerably more complicated. Since y; /o remains,
in the limit, a linear function of all the errors, the least-squares estimator con-
verges to a ratio of two quadratic functions of the errors. The exact distributions
of the least-squares statistics have no simple expression, but large sample rep-
resentations in terms of a continuous time process are available; see Phillips
(1987). We have the following result comparable to those above.

Proposition 3. In case 3, as 8 tends to one, 8 converges in probability to a
nondegenerate random variable. The limiting distributions (as # — 1) of the
least-squares statistics have the large sample approximations:

(a) T(B—B) — / fBgf + O(T‘l/z)

(b) (T — 1)5-; = Y (u — @)* + O(T°),

t



[ BdB

[/ B2

(c) tg — +0O(T™1/%),

\ B(1) [ BdB
(d) _e.z—*-_.»)_(uT+1+...+uT+s)+i_§~u—_.

; V-

where B(r) is a Wiener process on the unit interval given by limit (as T — o0)
of (us + -+ +upr)/ VT and [rT] denotes the integer part of 7T

The assumption about the initial value yg clearly matters a lot in determining
the limiting behaviour, as 8 — 1, of the least-squares estimator B. In the
stationary case, the standardised statistic vT(3—8)/+/1 — B2 tends to a Cauchy
variate; in the fixed start-up case, this statistic’s dispersion grows without bound
as (§ tends to one. Or, put another way, under stationarity 8 converges rapidly
to one for any sample size, whereas, under fixed start-up, [ converges to a
random variable with considerable dispersion unless T is large.

At first glance, this finding seems to be at variance with previous Monte
Carlo results. Phillips (1977), for example, reports that G has a highly skewed
distribution in the stationary case when 3 is large. Yet, as § — 1, the limiting
distribution is symmetric about 1. This suggests that the rate of convergence of
VT{ — B)6/0 in Proposition 1'is very slow. To investigate this possibility, we
calculated the percentiles of \/T_(ﬁ — B)/+/1 — (2 for various values of # under
the stationary assumption that u = 0 and o® = 62(1 ~ $2). The value for T
was set at 14 and the Imhof routine was employed. The results are presented in
the top panel of Table 1. The middle panel gives the percentiles of the variable
B — B. The lower panel gives the percentiles of the distribution of B — B under
the fixed start-up assumption that x4 = 0 and § = . The last two columns give
the interquartile range (IQR) and a skewness measure

Z75 — T 50
SK = =222,
L0 — Tos

where z,, is the o percentile point. 8K will be one for a symmetric distribution.

It is clear from the top panel that the rate of convergence to Cauchy is
extremely slow. Although the standardisation factor §/o seems to stabilise the
dispersion, the median and skewness are always far from the limiting values.
Indeed, the largest departure for the median occurs at 4 = 0.95 and the largest
departure for the skewness occurs at 8 = 0.99. The limiting distribution gives
little indication of the shape of the true sampling distribution even for g values
as large as 0.999. On the other hand, a comparison of the middle and bottom
panels suggests that the distribution of G in the fixed start-up model is a good
approximation to the distribution of B in the stationary model for 5 = 0.5 but
is not very good for S greater than 0.9. This conclusion agrees well and, to some
extent, explains the exact results on the mean-square forecast error obtained by
Hoque, Magnus and Pesaran {1988).



10.3 Regression with Intercept

When the regression contains an intercept, the relevant least-squares statistics

based on yp,y1,- ..,y can be expressed as
A (U1 — D
B = Bt+omFT"TF—F5, 8
2oe(y-1 — §)? )

-9 0'2

g° = T_QE(U,,—H)Q—(B—ﬂ)Qﬁ;(yt_l~g)2, 9)

i = a3 (Y1 — P (10)

[ (ve-1 — 1)

s5—1

. ; 15
€rys = —0) [uris;+oli—-—
T+ ;:o T+ 1-3
%5 s _ 1= 1-8) yr—yo
+(ﬁ—ﬂ)(yT—y)+L_[5,—l_ﬁ (1)

where § = T~ %", y1—1. (We shall not examine the least-squares estimator or
t-statistic for o, whose behaviour is somewhat different.) The analysis is similar
to that conducted in the previous section with y; — 7 replacing 3;. By successive
substitution in (1), we find

1- Bt t—1

p=og—g+ B + Sug) + a;ﬁiut_i (t >0)
and
J= 1fﬁ+%ll__ﬁ; (u+6u0~ l—f—ﬁ> +%:ll%ju]
and hence, for t > 0,
wog = LBV D b5 guy o i )
+ aggt-iuj - %:j 1—1—:%1% (12)

The behaviour of y; — 7 is rather different from that of y; when £ is near one.
Now everything depends on the relative magnitudes of o — u(1l ~ g8), §(1 — 3),
and o. Only one case seems to be of any interest (and covers both the fixed
start-up and stationary models).



Case 4: As 8 approaches one, 6(1 — 3)/c approaches zero and [a — u(1 — )] /o
approaches the constant A. Then, as § — 1,

Qt___g__,,\@_T_:_l)—‘th:u-—qf(l——j—)u-. (13)
= ) ~ ] pt T/

Again, when T is large, the weighted sum of errors can be approximated by
a functional on a Wiener process. We have, as § tends to one and ¢ = rT,

12\};,—31/ ~ *(7" é)ﬁ+3(r) —/B+0(T"1/2)‘ (14)

The sampling distributions of the least-squares statistics depend crucially
on A. If the y; process is mean stationary (i.e., Fy; does not depend on t}, then
A is necessarily zero. Likewise, if o = 0 and u does not depend on £, then X
will be zero. In these cases, we have

Proposition 4. If, as § — 1,0(1 — f)/o and [ — p(1 — B)] /o both tend to
zero, then [ converges in probability to a nondegenerate random variable. The
limiting distributions (as 8 — 1) of the least-squares statistics have the large
sample approximations

N TG g JBiB — BQ)[B

+0O(T7/%),

2

(b) (T~ 2)Z; — XA(T ~2) + O(T")

. [BiB~B()[B i
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BdB - B(1) [ B )
+"j’fff32~(f(;)f2 {3(1)—/B}+0(¢— ).

If the {y;} are not mean stationary, then X will generally be nonzero. In this
case ¥; behaves like a time trend (plus noise) when § is near one. We have

Proposition 5. If, as 8 — 1, 6(1 — 3)/o tends to zero but [a — p(1 - B); /o
tends to the nonzero constant )\, then § converges in probability to a nondegen-
erate random variable. The limiting distributions (as 8 — 1) of the least-squares
statistics have the large sample approximations

A

(a) ﬁTﬁ(ﬁ - ) — N(0,1) + O(T~ /%),



() (T-2% =T -2) + 0T,

(c) tg — Student (T —2)+ o(T-1/2),

(@) & N(o s+ —4—5—2) +O(TY
o ' T '

These results indicate that, when [ is near one, regression with an intercept
is very different from regression without an intercept. In the former case, the
limiting behaviour of § is quite sensitive to assumptions on y, but not sensitive
to assumptions on 4. In the latter case, the opposite holds. In regression with
intercept but oo = 0, the fixed start-up and the stationary models produce the
same limiting distributions. In regression without intercept, the two models
produce very different limiting distributions.

Some percentiles for the distribution of §—8 when T'=14 are given in Table 2.
The top panel is for the stationary model where o = p(1—3) and 02 = §%(1—£2).
The bottom panel is for the fixed start-up model where p=a =0and § = o.
The two distributions are very similar, although not identical, when £ is close
but not equal to one. For example, when 5 = 0.90, the dispersion and skewness
of the two distributions are close, but the medians differ by about 8%. This
agrees with the results obtained by Evans and Savin (1984, p. 1265) and Magnus
and Pesaran (1989, 1991).

10.4 Negative Unit Root

Although perhaps of less practical importance, the situation where 3 is near mi-
nus one also produces some unusual sampling behaviour. In regression without
intercept, a symmetry argument employed by Fuller (1976) can be exploited.
With z; = (—=1)%y;, v; = (~1)tu; and @ = 0, the model (1)-8(2) can be written
as

Ty = YT + W, (15)

Zg = j + 6o, (16)

where v = —f and w = o. Since the v; are independent standard normal
variables, the results of Section 2 apply to this new model for v tending to
one. Furthermore, a regression of z; on z;—1 produces statistics ¥ = —f5,t, =
—tg,&% = 62, and E74s — Tr4s = (—1)T (D745 — Y14s). Thus we have

Proposition 6. The limiting distributions of —(8—8), —tg, 62, and (=1)T+%er, /0
as 3 — —1 are identical to those given in Propositions 1-3 (where the three cases
now describe the behaviour of the parameters as § — —1 and the u’s are re-
placed with the v’s.)

Regression with an intercept, however, does not demonstrate the same sym-
metries. From (12), the behaviour of y; — § as 3 tends to minus one depends



Table 2: Distributions for regression with intercept in the
model y; = a + By +ow(t =1,...,T),yg = dug for T = 14.

B 2.5% 10% 25% 50% 75% 20% 97.5% IQR SK
Percentage points of f — 8,0 = 0,6 = o/ 1T 32
0.50 -0.717 -0.513 -0.334 -0.151 0.011 0.136 0.255 0.346 0.879
0.80 -0.809 -0.579 -0.391 -0.213 -0.071 0.033 0.143 0.320 0.796
0.90 -0.844 -0.607 -0.417 -0.242 -0.106 -0.003 0.104 0.311 0.776
0.95 -0.864 -0.624 —-0433 -0.259 -0.125 -0.023 0.082 0.308 0.774
0.99 -0.882 —0.639 —0.447 -—0.274 -0.140 -0.040 0.061 0.307 0.774
1.00 -0.887 —-0.644 -0.451 -0.278 -0.144 -0.045 0.056 0.307 0.774
Percentage points of 8- g, a=0d0=c
0.50 -0.723 -0.519 -0.339 -0.154 0.010 0.135 0.256 0.349 0.880
0.80 -0.831 -0.601 -0.410 -0.228 -0.082 0.024 0.135 0.329 0.801
0.90 -0.867 -0.631 —0.441 -0.263 -0.124 -—0.020 0.090 0.316 0.779
0.95 -0.881 -0.642 -—-0451 -0.277 -0.142 -0.038 0.070 0.310 0.774
0.99 -0.887 -0.645 —0453 -0.280 -0.146 -0.045 0.058 0.307 0.775
1.00 -0.887 -—-0.644 -—0.451 -0.278 -0.144 -0.045 0.056 0.307 0.774

on the relative magnitudes of a — p(1 — ), 6, and o. As noted by Fuller (1976),
the results are quite different from the situation where 3 tends to plus one. In
fact, the results are close to those for regression without intercept. Again three
cases can be distinguished.

Proposition 7. Suppose both o/§ and [o— pu(1 — )] /6 tend to zero as 3
approaches minus one; e.g., the y; are stationary. Then, as 8 — -1,

vi— (1) uo . (T even)
5 {(—1)‘— f}u() (T odd)

and 3 converges in probability to minus one. Furthermore, for fixed T,

(6) G¥*(F 52—~ Couchy,

=2
(b) (T =27 - X (T -2),

(c) tg ~ Student (T'—2),

(d) ZE — N(0,wh,),

{T
or = 1
T T

where
(T even)

(T odd)



and

2
s+ % (T even,s even)
2
1
s+ ;— (T even,s odd)
2
Wr s = 2
s+ - T (T+S) (T odd, s even)
T(T* - 1)
(T +s)?
S+ = T2 =1) + (T odd,s odd).

Proposition 8. Let p, = —3 [ — p(1 — §)] and suppose o/p. tends to zero
and §/p, tends to the constant @ as § approaches minus one; e.g. the y, are
variance stationary, but not mean stationary. Then, as § — —1,

v~ _ (=1)(1 + Bup) (T even)
P {(-=1)f ~T=1}(1 + Bup) (T odd),

and /3 converges in probability to minus one. Furthermore, for fixed T,

- /«L*
(5= 0%~ g

z

where 7 is defined in Proposition 7 and z ~ N(0, 1) is independent of ug; the
remaining statistics behave as in Proposition 7.

Proposition 9. Suppose §/c — § and [e — u(1 — )] /o — X as 3 approaches
minus one; e.g., the starting value yq is fixed. Then, as § — ~1,

a

1
— . 1 1
BT oo 2k Yu) + Asi,

=1
where

. _ v+ v+ Ur_g (I even)
T ~[5U0—%)\+02+U4+"'+UT_1] (T odd).

If, for large T, (vy + -+ + v;)/VT is approximated by the Wiener process

B(r) where r = t/T, then

(2) T(B—8) — —%25 +0(T7),
(6) (=25 (T -2+ 0@°)
(©) 5 — - [ff ;‘;B/Q ro-in),



(d) ZEE o (—) T g ored
, s [BdB - B(1)

for s odd; the term B(1)/+/T is dropped when s is even.

+(-1)7"

10.5 Conclusions

Assumptions about the initial observation can matter a lot in the AR(1) model
with near-unit root. When regressions are fitted without intercept, the station-
ary and fixed start-up models produce very different sampling properties when
the autoregression parameter is near plus or minus one. When regressions are
fitted with intercept, the two models have similar sampling properties when the
autoregression parameter is near plus one, but very different properties when
the parameter is near minus one.

As noted by Jensen (1986), the least-squares statistics in regression with-
out intercept have simple limiting distributions in the stationary model as the
autoregression parameter tends to unity. Unfortunately, those limiting distri-
butions do not seem to provide useful approximations for any given stationary
model.

Appendix: Derivations of Propositions
Proposition 1. Using the fact that y;/d — ug, we find
Zyt_lut/é—»uOZut (17)
> yi1/8 - Tuj. - (18)
This, together with (3) proves (a). Then (b) follows from (4) and the fact that
8-s)
— 2, — T(@)?
{ p jl Zyt——l — T'()

Next, (c) follows from (5), (17), (18) and (b). To prove (d), we use a slight
generalisation of (a), proved by a simple Taylor expansion, namely

Bs - ﬁs:'

and

5§ TY?q
—_——
o Up

/2 ~ Cauchy. (19)

8

Using (19), we obtain

2

(B ~ 8*yurfo — st~ N (0, )



and hence (d).
Proposition 2. Similar to the derivation of Proposition 1.

Proposition 3. We have, as § — 1,
w/o — b+ Sug + TV ?wy,

where
Wy =T_1/2(’LL1 +ug 4+ ug), wg = 0. (20)

We shall employ the following approximations for large T'; see Phillips (1987, p.
294):

Ty i, = /0 B(r)dr + 0T, (21)

1
S w1 (e — wey) =/ B(r)dB(r) + O(T1/2), (22)
0
In addition, we note that wy = B(1) = N(0,1). Then, as f — 1,
TS yewfo - Y wiea(w —wyoy) + T30+ Sug)we

= /Ba’B +O(T~1/?)

and
T2 ny_l/a2 - 77! wa,,l + 2T‘l/2(/1 + bug) (T‘l Z wt_1>
+ Thl(/._ll -+ 5’&0)2
= /B2 +O(T" %),
and, hence, using (3)-(6), the proposition follows.

Proposition 4. Since A = 0, we have from (13), as 8 — 1,

=y -1
—wy — T E Wi
oVT ‘ =l

where w; is defined in (20). Hence
T Wm1 = Dwfo = 3 wea(we—wem) —wr (T Y wes )
= /BdB - B(l)/B+ O(T"1/?),
T3 (s =90 = T Y wh, ~ (T D wes)
= /BQ— (/B)2+O(T‘1),




where, in addition to (21) and (22), we have used

7! Zwt'l = /01 B(r)dr 4+ O(T™1). (23)

The results now follow from (8)-(11).

Proposition 5. We define

= [127-3]"/* (t— Ig-—l-) (t=1,2,...,T),

so that ¢, =0 and 62 = 1 4+ O(T~2). Then, letting v = A\/v/12, we obtain
from (13), as § — 1,

Yi—1— Y 1
o T — yTey + wia Tzwt—l
and hence
T 1 yt 1 y — g +T—l/2 ,
U\/_ Yz Q
Z[% 1—yJ — P NT P2+ 0T,
where

2 = Y e ~N(O,1)+0(T?,
2y = T_1/2thwt_1 ~ N(O, 116) + O(T—l),
Zwt 1{wg — wy— 1 ( 127-0:: 1)

Using these results, we obtain, from (8)-(11),

Q — 22129
5

1l

Q

VTRE-F) — a+T? +O(T™),

= > (w— 1) — 22 = 27725 (Q - 2120) /7 + OTTY),

1/2
) [———————~—Z(“*; “)22 - zl] 2+ 0T,

B
— ——(uT+1 4 +’LLT+5) + ﬁ(’wT + Zl\/g)

+ % [\@(Q ~ 22129) + 21 (wr ~ Tt Zwt_l)] + O(T"3/2).



The results of Proposition 5 then follow. In fact, we have proved a bit more
than Proposition 5. For example, noting that

EQ = ——;- + O(T—l), Eziz9 = O(T—l),

Ezywr =0, Exn(T Y uy-) = —%\/g—i— (9(T"2),

we obtain the following expectations:

T?E(B—B) — —3~2—+0(T"“2), (24)
5'2 -2
Em — 1+0(T7), (25)
TEZEt "—2‘5+O(T"1/2). (26)
a A

Proposition 6. See text.
Proposition 7. From (12), we have
(yt - g)/é - TCt“O,
where
P (-1t (T even)
T (-1)F-1/T (T odd).

Since S k? ; = or and defining k;, = zp;l/zl—ct, we obtain

Z(yt—l — §)us/8 — ugpy!’ Z ki—1uy

and
Z(yt—l - §)%/8* — udeor.

Using (8), we then find

t,o%,!z(ﬁ - B)s/o — —E—lt;:lﬂ ~  Cauchy.
0

Next, since

- 2
(6 -8 Z(yt~1 —§)*/a* = (Zh—l%) ~x*(1),
and defining
M = Ir —i'/T, i=(1,1,...,1),

k=(k0,k1:~'-7kT—-1)/ ’I.L—’_—(ul,’LLQ,...,'LLT)/,



we obtain, using (4),
2
(T —2)6%/0% — Z(ut —@)? - (Z kt..lut> =o' (M — kk"u ~ x*(T - 2),
since Mk = k. Also, using (10},

) {u'(M - kk')u

-1/2
o T-2 ] Zki~—1ut ~ Student (7' —2),

since (M — kk')k = 0. Finally, using (11),
éris/o — 21 + 20 + 23,

where 21, zg and 23 are independent random variables defined by

s—1

21 == Z(_l)iUT-ks—i ~ N(0, 5),
=0

B (s even)
27 a~NO,YT) (s odd),
{ T-28 5" ky_yuy ~ N(0,8%/T) (T even)
23 =

—[T(T2 - 1) V2s(s + T) S by ~ N [o, ;2—((;,;:311;—} (T odd).

The result follows.
Proposition 8. Similar to the derivation of Proposition 7.

Proposition 9. We have, as § — 1, from (12):

= 1
(e = 9)/o = (“)'T" 2@, + (=1)"(duo — 5A) + T7/*(T7/25r),

where
— __ g—1/2 .
Wy =T (v1 o2+ +w).
Hence,
TS (oot — PJafor — — / BdB + 0T~/
and

1723 geer — 9o = [ B2+ 0T,

The results then follow using (8)-(11).
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