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PROBLEMS AND SOLUTIONS

PROBLEMS

00.2.1. Degeneration of Feasible GLS to 2SLS in a Limited Information Si-
multaneous Equations Modeairoposed by Chuanming Gao and Kajal Lahiri
Consider a simple limited information simultaneous equations model

Y1 =Y. T 4, (1)
y2 = XB + v, (2)

wherey, Y, areN X 1 vectors of observations on two endogenous variablées
N X K matrix of predetermined variables of the systamdK = 1 such thatl) is
identified Each row of(u,v) is assumed to beiid. (0,%), andX is p.d.s.

Following Lahiri and Schmid{1978, feasible GLS fol1) and(2) based on a
consistent estimate @fyields a consistent estimate fprPagan1979 showed
that an iterated Aitken estimator will generate LIML estimate/ of

Denotey,s s= (Y5PY,) 1ysPy;, whereP = X(X'X)1X". The residualéi =y —
YossY. ando = My,, whereM = |y — P, may be used to generate a consistent
estimate foz, e.g.,
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Show that a feasible GLS estimatepﬂsingi (i.e., the first iterate of iterated
Aitken) degenerates tf,g, s
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00.2.2. The Maximum Number of Omitted Variahl@soposed by Dmitri L
Danilov and Jan RMagnus Consider the standard partitioned regression model
y= X181+ X585+ U, whereX= (X;: X,) is a nonstochastiex k matrix with full
column rankk = k; + k,. We are interested in estimatig and considef, as a
nuisance parametdretr = rank(X;X,). Show that we may assumeithout loss
of generalitythatk, = r and hencein particular thak, = k;. Can we still make
this simplifying assumption when drawing inferences ak®t

In the special case where= 0 and where consequentfg is orthogonal toK,,
we may deleteX, altogethera well-known result
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In another special case whédtg= 1 (one “focus” parameter and the rest nui-
sance parametexst is sufficient to consider jusbnenuisance parameter

00.2.3. Effects of Transforming the Duration Variable in Accelerated Failure
Time (AFT) Modelsproposed by X. SapraConsider the following AFT model

Int = B'X + &, (1)

wherexis a(m X 1) vector of known constantg is a(m X 1) vector of unknown
parameterse = Inty — E(In tp), andty is a random variable with a density func-
tion not involvingx or B.

(@ Show that the following transformations iead to AFT models(i) y = kt, k > O,
and(ii) y = tk wherek is a constant

(b) Show that the following transformationstodo not lead to AFT modelsi) y=a +
bt,a> 0,b > 0, and(ii) y = exp(a + bt), wherea andb are constants

(c) Derive the hazard functions for the density functions/af parts(a) and(b) by
using the transformations vflefined therein

00.2.4. Conflict Among Criteria for Testing Hypotheses: Examples from Non-
Normal Distributions proposed by Badi HBaltagi Berndt and Savir{1977)
showed thatw = LR = LM for the case of a multivariate regression model with
normal disturbancedJllah and Zinde-Walsti1984) showed that this inequality
IS not robust to non-normality of the disturbandeghe spirit of the latter article
this problem considers simple examples from non-normal distributions and illus-
trates how this conflict among criteria is affected

(@) Considerarandom samplg X, ..., X,from a Poisson distribution with parameter
A. Show that for testing = 3 versusA # 3 yieldsW= LM for x= 3 andW = LM
forx = 3.

(b) Consider a random sampte, x», ..., X, from an exponential distribution with pa-
rametem. Show that for testing = 3 versug # 3 yieldsW= LM for 0 < Xx= 3 and
W= LM forx= 3.

(c) Consider arandom sampte, x», ..., X, from a Bernoulli distribution with param-
eterd. Show that for testing = 0.5 versus # 0.5, we will always getW = LM.
Show alsothat for testing =  versug #+ 3 we getW= LM for 3 = x=< % andw=
LMfori=x=lor0<x=<3.
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00.2.2. The Maximum Number of Omitted VariableSetution proposed by
Dmitri L. Danilov and Jan RMagnus If r = 0, the result is simple and well
known We assume that= 1. Let (S: T) be an orthogonat, X k, matrix such
that

XpX, XiX,S=SA,  X{X,T=0,

where A denotes amr X r diagonal matrix with positive diagonal elements
Notice that the dimensions @andT arek, X r andk, X (k, — r), respec-
tively. BecauseX; X, has full rankk,, we obtain

r(XT) =r(XX,T)=r(T) =k, —,

so that then X (k, — r) matrix W, = X, T has full column rankHence we may
define the idempotent matrid, = I, — W,(Wy W,) W,
Now, let W, = M, X,S ann X r matrix. Because

Wy = My X, S=X,S— Wo(Wo W,) "W X, S
we obtainX; W, = X;X,Sand hence
X5 X X1 W, = X5 X, X1 X, S= SA,

so thatr = r(X;X; X;W;) = r(W;) =r and hencer(W,) =r.

Next, let W = (W;: W,). We already know that(W;) = r andr(W,) =
k, — r. BecauseM,W, = 0, it follows thatW/ W, = 0 and hence thatr (W) =
r(Wp)) +r(W,) =r + ky, — r = Ko.

Finally, we observe that

My Xy = X — X, T(Ws Wo) W5 X, = X, P
for some matrixP and hence
W: (Wl.WZ) = (M2XZS: X2T) = (X2 PS' X2T) = X2Q

for somek, X k, matrix Q. Because (W) = k,, Q is non-singular

It is now easy to see thal, is orthogonal to both, andX,. Also, the space
spanned by thé&, columns ofW is identical to the space spanned by the
columns ofX,, so thatX,8, = W§ for some choice 0d (namelyd = Q13,).
Hence the estimatoi3; obtained from a regression gfon X; and X, will be
identical to the estimator obtained from a regressiog on X; andW;, andW,;
only hasr columns

When drawing inferences abog@f, we assume that ~ N(0, o ?l,)). The es-
timator of o2 will be biased upward if we deletd, from our regressianeven
thoughW, is orthogonal to bothiX; and W, just as in the standard textbook
case



