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This article briefly discusses the meaning and dangers of pretesting in
estimation procedures. It outlines the proof of the equivalence theorem, and
compares the pretest estimator with three other estimators: the ‘usual’
estimator, the ‘silly’ estimator and the ‘Laplace’ estimator.

1 Model selection versus estimation

Suppose data are generated by a linear relationship

y ¼ Xbþ gzþ u; u � Nð0; s2InÞ, ð1Þ

where X is an n� k matrix of explanatory variables and z is an additional
n� 1 vector of explanatory variables. In our role as investigator we do not
know this relationship. Our interest is in the effect of X on y, that is, we want
to estimate b. Since we don’t know that y is generated by (1), we formulate a
model that will serve as a vehicle to estimate b. Let us assume that we know
that the relationship is linear, that X is certainly in the model, and that z is
perhaps in the model. For simplicity we assume also that s2 is known. Thus
our ‘model space’ consists of only two models: the unrestricted model (where
g 6¼0) and the restricted model (where g=0).

Our interest could be in finding the ‘true’ model, in which case we are
concerned with model selection. In that case we should select the unrestricted
model, however small g turns out to be. Our interest, however, is in the
estimation of b and the model is not of interest per se – it is only a means
towards our goal. Even if we knew that g is nonzero, this would not
necessarily mean that we should include z in our regression. This is because,
if g is close to zero, a small bias in the estimates of b will result if we use the
restricted model, but their variances may increase substantially, and hence
the mean squared error will also increase substantially. (Recall that the bias
depends on the value of g but the variance does not.) So even if we know the
truth, it is typically wise to simplify for the purposes of estimation.

2 What is pretesting?

The ordinary least squares (OLS) estimator for b in the restricted model is of
course

br ¼ ðX 0XÞ
�1X 0y. ð2Þ

If we define

M ¼ In � XðX 0XÞ
�1X 0; q ¼

sffiffiffiffiffiffiffiffiffiffiffi
z0Mz

p ðX 0XÞ
�1X 0z,

y ¼
g

s=
ffiffiffiffiffiffiffiffiffiffiffi
z0Mz

p ,

then we can write the OLS estimators for b and g in the unrestricted model as

bu ¼ br � ŷq; ĝ ¼
z0My

z0Mz
, ð3Þ

where

ŷ ¼
ĝ

s=
ffiffiffiffiffiffiffiffiffiffiffi
z0Mz

p ¼
z0My

s
ffiffiffiffiffiffiffiffiffiffiffi
z0Mz

p � Nðy; 1Þ ð4Þ



denotes the t-ratio, which is normally distributed in this case because s2 is
assumed known. We call y the theoretical t-ratio.

Since we don’t know which of the two models we should use in order to
estimate b, the typical econometric practice is to perform a preliminary test
(pretest) on g, and to include z in our regression if the t-ratio ŷ is ‘large’ and
exclude it if ŷ is ‘small’. This leads to the so-called pretest estimator

b ¼
br if jŷj � c;

bu if jŷj4c;

(
ð5Þ

where c is some positive number such as 1.96. We can also write (5) as

b ¼ lbu þ ð1� lÞbr; l ¼
0 if jŷj � c;

1 if jŷj4c;

(
ð6Þ

which emphasizes that the pretest estimator is a weighted average of the
estimators in the available models. The weights, however, are random
variables because they depend on ŷ. The pretest estimator is therefore a
complicated nonlinear estimator.

The problem with pretesting is not so much that people do it, but that they
ignore the consequences. In typical econometric practice, model selection
takes place using t-ratios and other diagnostics, after which a single model is
selected (stage 1). Then estimates and standard errors are obtained in the
selected model (stage 2), and these are reported. It is then tacitly assumed
that the reported estimates are unbiased and that their standard errors are
given by the usual OLS formulae. This assumption, however, is incorrect.
The estimates are biased and their standard errors are not given by the usual
OLS formulae. This is the pretest problem.

3 The equivalence theorem

Things are made simpler by the equivalence theorem, originally proved by
Magnus and Durbin (1999), and improved and extended by Danilov and
Magnus (2004a).

Theorem 1 (Equivalence theorem): Let b ¼ lbu þ ð1� lÞbr, where 0 � l � 1
and l ¼ lðMyÞ.

Then, letting ~y ¼ lŷ, we have

EðbÞ ¼ b� Eð~y� yÞq; varðbÞ ¼ s2ðX 0XÞ
�1

þ varð~yÞqq0

and hence

MSEðbÞ ¼ s2ðX 0XÞ
�1

þMSEð~yÞqq0.

Proof We know from (3) that bu ¼ br � ŷq, so that

b ¼ lbu þ ð1� lÞbr ¼ br � lŷq ¼ br � ~yq.

The crucial ingredient is that br and My are independent, so that

EðbrjMyÞ ¼ EðbrÞ; varðbrjMyÞ ¼ varðbrÞ.

Also, since both l (by assumption) and ŷ as given in (4) depend only on My,
we see that ~y ¼ lŷ depends only on My. Hence,

EðbjMyÞ ¼ EðbrÞ � Eð~yjMyÞq ¼ bþ yq� ~yq ¼ b� ð~y� yÞq
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and

varðbjMyÞ ¼ varðbrjMyÞ ¼ varðbrÞ ¼ s2ðX 0XÞ
�1.

Now using the well-known relationships between conditional and uncondi-
tional moments, we obtain

EðbÞ ¼ EðEðbjMyÞÞ ¼ b� Eð~y� yÞq,

and

varðbÞ ¼ EðvarðbjMyÞÞ þ varðEðbjMyÞÞ

¼ s2ðX 0XÞ
�1

þ varð~yÞqq0,

and hence

MSEðbÞ ¼ varðbÞ þ Eðb� bÞðb� bÞ0

¼ s2ðX 0XÞ
�1

þ varð~yÞqq0 þ ðEð~y� yÞÞ2qq0

¼ s2ðX 0XÞ
�1

þMSEð~yÞqq0.

This completes the proof. ||
The equivalence theorem is important because it tells us that if we have a
‘good’ estimator for y, say ~y, then this defines l ¼ ~y=ŷ and the same l will
provide a good estimator for b, namely b ¼ lbu þ ð1� lÞbr. The pretest
estimator chooses

~y ¼
0 if jŷj � c;

ŷ if jŷj4c;

(

which is not a good choice as we shall see.

4 Moments of the pretest estimator

In the previous section we have seen that the pretest estimator is, in essence,
of the form

tðxÞ ¼
0 if jxj � c;

x if jxj4c;

(
ð7Þ

where x � Nðy; 1Þ. When studying this estimator, we confront it with three
other estimators: the ‘usual’ estimator tðxÞ ¼ x, the ‘silly’ estimator tðxÞ ¼ 0,
and the ‘Laplace’ estimator introduced in Magnus (2002). The four
estimators are graphed in Figure 1 for jxjo4.

It is clear that the pretest estimator is discontinuous, hence inadmissible.
But this is only one of its uncomfortable properties.

Theorem 2 (Moments of pretest estimator): Let x � Nðy; 1Þ and let t(x) be the
pretest estimator defined in (7). Then,

Eðt� yÞ ¼ jðc� yÞ � jðcþ yÞ � yP

and

Eðt� yÞ2 ¼ 1þ ðcþ yÞjðcþ yÞ

þ ðc� yÞjðc� yÞ þ ðy2 � 1ÞP,

where j denotes the standard-normal density and P ¼
R�yþc

�y�c jðuÞdu.
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Proof Letting S ¼ fu : �y� couo� yþ cg, we have

EðtðxÞÞ ¼

Z
N

�N

tðxÞjðx� yÞdx ¼

Z
jxj4c

xjðx� yÞdx

¼ y�
Z
jxjoc

xjðx� yÞdx ¼ y�
Z
S

ðuþ yÞjðuÞdu

¼ y�
Z
S

ujðuÞdu� y
Z
S

jðuÞdu

¼ yþ ½jðuÞ�S � yP ¼ yþ jð�yþ cÞ � jð�y� cÞ � yP,

using the fact that j0ðuÞ ¼ �ujðuÞ. Similarly, using the fact that
j00ðuÞ ¼ ðu2 � 1ÞjðuÞ, we obtain the second result. ||
The bias, standard error and root mean squared error of the pretest
estimator are graphed in Figure 2.

We see that the bias is relatively small compared with the standard error.
Since biasð�yÞ ¼ �biasðyÞ (so that y and bias(y) have opposite signs), and
since we know from Theorem 1 that biasðbiÞ ¼ �biasð~yÞqi, we can determine
the direction of the pretest bias.

Theorem 3 (Sign of pretest bias): Let w :¼ ðX 0XÞ
�1X 0z with components wi

(i ¼ 1; . . . ; k). Then the pretest bias of bi is positive (that is, EðbiÞ4bi) if and
only if giwi40. As a consequence we can estimate the sign of the pretest bias
of bi by signðwi ĝiÞ.

For purposes of exposition we have concentrated on the simplest case, but
considerable generalization is possible to more than one additional z-
variable, to unknown s2, and to general variance matrix.
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Figure 1 Four estimators t(x) of y.
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5 Alternatives

We now compare the pretest estimator with the four estimators in Figure 1.
We graph the root mean squared error (RMSE) of each of the four
estimators in Figure 3.
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Figure 2 Moments of the pretest estimator.
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Figure 3 Root mean squared error of the four estimators.
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The ‘usual’ estimator is unbiased and has variance one, independent of the
value of y. The ‘silly’ estimator is obviously better when y is close to zero, the
two estimators have the same RMSE when y ¼ 1, corresponding to the fact
that

MSEðbrÞ �MSEðbuÞ ¼ ðy2 � 1Þqq0,

but the RMSE of the ‘silly’ estimator is unbounded. The pretest estimator
lies in-between the silly and the usual estimator, except in the important
interval around y ¼ 1 where the pretest estimator is worse rather than better
than either of the two naive alternatives. This is a most unwelcome property
of the pretest estimator, and it has given rise to thought about alternatives.
An attractive alternative is the so-called Laplace estimator, which has a
Bayesian and a non-Bayesian interpretation, is admissible, is based on a
‘neutral’ prior, and has good properties around y ¼ 1. The dotted line
jyj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
denotes the theoretical lower bound of the root mean squared

error.

6 History

The implications of model selection on the estimators of the parameters of
interest were already being discussed following Tinbergen’s (1939) study for
the League of Nations. Both Keynes (1939) and Friedman (1940), in their
respective critiques on Tinbergen, focused on the method of model selection
when the estimation procedure repeatedly uses the same data to discriminate
between plausible competing theories. The same point was made in
Haavelmo (1944, Section 17). Koopmans (1949) suggested that a completely
new theory of inference was required to solve the dilemmas implied by the
model selection problem.

Early work on the pretest estimator includes Bancroft (1944, 1964),
Huntsberger (1955), Larson and Bancroft (1963), Cohen (1965), Wallace and
Ashtar (1972), Sclove, Morris and Radhakrishnan (1972), Bock, Yancey and
Judge (1973), and Bock, Judge and Yancey (1973). The harm of ignoring the
effects of pretesting was analysed by Danilov and Magnus (2004a, 2004b).
Important surveys are provided by Judge and Bock (1978, 1983), Judge and
Yancey (1986), Giles and Giles (1993), and Magnus (1999).
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