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a b s t r a c t

We analyze a stochastic dynamic finite-horizon economic model with climate change,
in which the social planner faces uncertainty about future climate change and its
economic damages. Our model (SDICE*) incorporates, possibly heavy-tailed, stochasticity
in Nordhaus’ deterministic DICE model. We develop a regression-based numerical
method for solving a general class of dynamic finite-horizon economy–climate models
with potentially heavy-tailed uncertainty and general utility functions. We then apply
this method to SDICE* and examine the effects of light- and heavy-tailed uncertainty.
The results indicate that the effects can be substantial, depending on the nature and
extent of the uncertainty and the social planner’s preferences.
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1. Introduction

The current economy–climate debate raises many difficult issues. Only one of these is discussed in the current paper,
namely the question if and how abatement, consumption, and investment policies are affected by catastrophic risk.
Economy–climate policies are typically analyzed using Integrated Assessment Models (IAMs) that describe the complex
interplay between climate and the economy. Our paper augments a widely used deterministic IAM by incorporating
(potentially heavy-tailed) risk related to future climate change and its associated economic damage, and analyzes its
impact on the policy variables.

Our model is based on Nordhaus’ (2017a, 2017b) dynamic integrated model of climate and the economy (DICE), which
has become an important benchmark IAM, not only in the theoretical literature but also serving as a tool for economy–
climate policy analysis by the US government. The DICE model is our starting point and the deterministic version of
our model reduces to DICE. To represent uncertainty and motivated by the developments in Manne and Richels (1992),
Nordhaus (1994), Roughgarden and Schneider (1999), Kelly and Kolstad (1999), Keller et al. (2004), Mastrandrea and
Schneider (2004), Leach (2007), Weitzman (2009), and in particular Ackerman et al. (2010), we introduce to DICE random
shocks featuring potentially heavy-tailed risk. We refer to the resulting stochastic model as SDICE*. We initially focus on
uncertainty through the damage-abatement fraction and, later, in an extension of this base stochastic model, we shall also
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account for uncertainty in the damage parameter, an uncertain emissions-to-output ratio, and uncertainty in technological
efficiency.

To solve the stochastic dynamic economy–climate model thus obtained, we embed the associated optimization problem
into a general class of stochastic dynamic finite-horizon optimization problems. We next develop a regression-based
method for solving such problems. Our solution method is flexible in the sense that it allows for a wide class of utility
functions and that it imposes only weak assumptions on the stochasticity, permitting both light- and heavy-tailed risks
and stochastic parameters.

In the context of SDICE* we show formally that heavy-tailed risk is only compatible with some utility functions, and in
particular that it is not compatible with power utility. To do so, we invoke the general decision-theoretic results of Ikefuji
et al. (2015) and apply these to the current setting. We propose to use the Pareto utility function to represent preferences
in the presence of heavy-tailed risk. This utility function was introduced by Ikefuji et al. (2013) and advocated by Cerreia-
Vioglio et al. (2015). Pareto utility avoids the drawbacks ‘near the edges’ that standard families of utility functions such
as power and exponential utility exhibit, and is particularly suited for heavy-tailed risk analysis.

Our four main findings are as follows. First, the introduction of light-tailed uncertainty through the damage-abatement
fraction of SDICE* leads to a reduction of abatement, while optimal consumption and investment are relatively less
affected. Conditional upon the shocks realizing their expected value, namely zero, the pattern remains the same in later
periods, and this applies to both power and Pareto utility. Although lower abatement has a negative propagation effect in
our economy–climate model, the social planner sacrifices some abatement to maintain consumption and investment,
under uncertainty about the damage-abatement fraction. Compared to a Pareto utility maximizer, the power utility
maximizer has a stronger motive to avoid a low damage-abatement reduced output, and therefore consumes less in early
periods and invests and abates more in all periods. The changes remain small as long as the shocks take values close to
their expectation, that is, in the ‘center’ of the distribution.

Second, when the light-tailed shocks take larger negative values, the optimal policies are more affected: pronounced
differences occur in the optimal policy and state variables at the ‘edges’, both within and between models. In particular,
a power utility maximizer has a stronger motive to abate as a precaution (Kimball, 1990) than a Pareto utility maximizer,
and this amplifies with adverse realizations of the shocks. This effect is the result of a trade-off between maintaining
current consumption and taking intensified precautionary action under adverse circumstances. We find that the power
utility maximizer tends to favor a relatively larger substitution from current consumption to intensified precautionary
action when compared to Pareto utility. This effect is distinct from the higher levels of abatement observed for a power
utility maximizer in the center of the distribution (and under the deterministic model) which it further amplifies.

Third, allowing for heavy-tailed uncertainty making catastrophic risk scenarios more pronounced, our first main finding
broadly remains valid under Pareto utility, while our second main finding gets reinforced, with power utility becoming
incompatible in this case. Indeed, for a power utility maximizer, the expectation of the intertemporal marginal rate of
substitution becomes infinite when considering heavy-tailed uncertainty in the SDICE* model.

Fourth, in the center of the distribution the impact of uncertainty in the damage-abatement fraction dominates
the impact of uncertainty in the damage parameter and an uncertain emissions-to-output ratio and closely resembles
the impact of uncertainty through technological efficiency. At the edges, an uncertain damage parameter impacts
consumption, but leaves abatement nearly unaffected, while uncertainty in the emissions-to-output ratio significantly
impacts abatement but has relatively little effect on consumption. Furthermore, when adverse scenarios for technological
efficiency realize, optimal abatement is suppressed compared to the adverse scenarios in which the damage-abatement
fraction is relatively small.

Although there are many papers on climate policy under uncertainty, the literature on the interplay between climate
and the economy under uncertainty is much smaller. The existing IAMs which explicitly include uncertainty can be divided
into three classes: (i) stochastic dynamic IAMs with learning, but no consideration of catastrophe; (ii) deterministic IAMs
considering catastrophe; and (iii) stochastic dynamic IAMs considering tipping points.

In class (i), Kelly and Kolstad (1999) explore Bayesian learning about the relationship between greenhouse gas levels
and global mean temperature changes, analyze when uncertainty is resolved, and show that the expected learning time
depends on the variance of the temperature realizations and varies directly with the emission policy. Extensions of Kelly
and Kolstad (1999) are provided in Keller et al. (2004), Leach (2007), and Traeger (2014). Jensen and Traeger (2014b) study
the effects of climate sensitivity uncertainty, learning, and temperature stochasticity separately, and find precautionary
savings in the presence of the stochasticity of temperature, while Bayesian learning about climate sensitivity raises the
abatement rate and hence the optimal carbon tax.

In class (ii), Mastrandrea and Schneider (2004), Ackerman et al. (2010), Dietz (2011), Hwang et al. (2013), and Gilling-
ham et al. (2015) study the implication of catastrophic risks in IAMs. These papers focus on examining the shape of the
damage function and the climate sensitivity parameter. We mention in particular the relevant contribution by Ackerman
et al. (2010), who analyze the impact of parameter uncertainty in the specification of the damage function and/or in the
temperature equation on the optimal policies. Their approach consists in first simulating the parameter(s) of interest by
drawing from a prespecified probability distribution, and then deterministically solving DICE for each realization of the
parameter(s), thus obtaining a ‘distribution’ of the optimal policies. This approach provides an assessment of the sensitivity
and robustness of the optimal policies to parameter assumptions within the context of a deterministic economy–climate
model. Also, Gillingham et al. (2015) conduct an extensive Monte Carlo analysis for six IAMs, to analyze how model output
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responds to model misspecification due to parameter uncertainty, by estimating surface-response functions. The current
paper, in contrast, solves a stochastic optimization problem. Our social planner takes potentially heavy-tailed stochasticity
in the damage-abatement fraction (and the damage parameter, the emissions-to-output ratio and technological efficiency,
in extensions of the model) already into account when solving for the optimal policies.

In class (iii), Lemoine and Traeger (2014), Lontzek et al. (2015), Cai et al. (2012, 2016), and Berger et al. (2017) explore
how the risk of stochastically uncertain environmental tipping points affects climate policy, using a stochastic IAM based
on the DICE model. Berger et al. (2017) adopt non-expected utility preferences to accommodate aversion to both risk
and ambiguity when analyzing tipping elements in climate change, employing a two-period model in which uncertainty
resolves in 2100. The paper by Cai et al. (2012) is particularly relevant for us. They extend conventional economy–climate
analysis based on deterministic IAMs to allow for a range of stochastic features. In particular, they conduct an extensive
analysis of carbon emission policies in a stochastic environment. A key distinction between their work and ours is that
they only allow shocks with a bounded probability distribution, thus ruling out the normal or the Student distribution,
in order to avoid catastrophic risk scenarios (‘tail events’). In contrast, risks with unbounded support and potentially
featuring heavy tails, as well as the catastrophic risk scenarios they may induce, are at the heart of our analysis.

Our paper also relates to the literature on numerical methods for dynamic programming and stochastic optimal control.
The algorithm that we develop for solving SDICE* is inspired by the Least Squares Monte Carlo (LSMC) approach introduced
by Longstaff and Schwartz (2001); see also Carriere (1996), Clément et al. (2002), and Powell (2011) for further details,
including convergence results. LSMC has been successfully applied to a variety of problems in financial economics and
operations research; see e.g., Brandt et al. (2005), who use LSMC to solve a portfolio choice problem with non-standard
preferences, Laeven and Stadje (2014), who solve problems of optimal portfolio choice and indifference valuation under
general asset price dynamics and in the presence of model uncertainty using LSMC, and Krätschmer et al. (2018), who
employ LSMC to analyze model uncertainty in optimal stopping.

The paper is organized as follows. In Section 2 we succinctly summarize DICE. In Section 3 we introduce uncertainty
into DICE. In Section 4 we provide a formal description of a general class of stochastic dynamic finite-horizon economy–
climate models, allowing for heavy-tailed uncertainty and general utility functions and embedding SDICE* as a special case,
and develop a regression-based method for solving such models. In Section 5 we show, in the context of our model, that
heavy-tailed uncertainty is not compatible with all utility functions, in particular power utility, and propose an alternative
utility function: Pareto utility. In Section 6 we present the results of our SDICE* model and discuss their implications, while
some extensions are presented in Section 7. Section 8 concludes.

2. Nordhaus’ DICE model

Our analysis takes as its starting point the DICE model, more precisely the ‘beta version’ of DICE-2016R, a version with
identification DICE-2016R-091916ap.gms; see Nordhaus (2017a,b). (Earlier versions are in Nordhaus and Yang (1996) and
Nordhaus (2008, 2013).) We briefly summarize this model in condensed form.

Everybody works. In period t , the labor force Lt together with the capital stock Kt generates GDP Yt through a
Cobb–Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1), (1)

where At represents technological efficiency and γ is the elasticity of capital. Capital is accumulated through

Kt+1 = (1 − δ)Kt + It (0 < δ < 1), (2)

where It denotes investment and δ is the depreciation rate of capital.
Carbon dioxide (CO2) emissions consist of industrial emissions (caused by production) and non-industrial emissions.

We denote the latter type by E0
t and consider it to be exogenous to the model. Total CO2 emissions Et are then given by

Et = σt (1 − µt )Yt + E0
t , (3)

where σt is the emissions-to-output ratio for CO2 and µt is the abatement fraction for CO2. The associated CO2
concentration increase Mt in the atmosphere (GtC from 1750) accumulates through

Mt+1 = (1 − b0)Mt + b1M
(s)
t + Et , (4a)

M (s)
t+1 = b0Mt + (1 − b1 − b3)M

(s)
t + b2M

(l)
t , (4b)

M (l)
t+1 = b3M

(s)
t + (1 − b2)M

(l)
t , (4c)

where M (s)
t and M (l)

t are auxiliary variables representing CO2 concentration increases in shallow and lower oceans,
respectively.

Temperature increase Ht (degrees Celsius from 1900) is given by

Ht+1 = (1 − a0)Ht + a1 log(Mt+1) + a2 H
(l)
t + Ft+1, (5a)

H (l)
t+1 = (1 − a3)H

(l)
t + a3Ht , (5b)
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where H (l)
t is an auxiliary variable representing temperature increase of the lower oceans and Ft+1 is exogenous radiative

forcing.
In each period t , the fraction of GDP not spent on abatement or ‘damage’ is either consumed (Ct ) or invested (It ) along

the budget constraint(
1 − ωt − ξH2

t

)
Yt = Ct + It . (6)

A fraction ωt of Yt is spent on abatement, and we specify the abatement cost fraction as

ωt = ψtµ
θ
t (θ > 1). (7)

When µt increases then so does ωt , and a larger fraction of GDP will be spent on abatement. Damage is represented by
a fraction ξH2

t of Yt , and it depends only on temperature. The optimal temperature is Ht = 0, the temperature in 1900.
Deviations from the optimal temperature cause damage.

Eqs. (1)–(7) imply a condensed system consisting of six dynamic equations (in the state variables K , M , H , M (s), M (l),
and H (l)) in terms of the three policy variables I , µ, and (through the budget constraint) C .

As in DICE-2016R one period is five years. Period 1 refers to the time interval 2015–2019, period 2 to 2020–2024, and
so on. Stock variables are measured at the beginning of the period. We choose the exogenous variables such that Lt > 0,
At > 0, E0

t > 0, σt > 0, and 0 < ψt < 1. The policy variables must satisfy

Ct ≥ 0, It ≥ 0, µt ≥ 0. (8)

Nordhaus restricts µt ≤ 1 in the early periods, but he allows an upper bound of 1.2 from period 30 onwards (year 2160).
We do the same.

Given a utility function U we define welfare in period t as

Wt = LtU(Ct/Lt ). (9)

The policy maker has a finite horizon and maximizes total discounted welfare

W =

T∑
t=1

Wt

(1 + ρ)t
(0 < ρ < 1), (10)

where ρ is the discount rate and T = 100 (500 years). Letting x denote per capita consumption, the utility function U(x)
is assumed to be defined and strictly concave for all x > 0. There are many such functions, but a popular choice is

U(x) =
x1−α − 1
1 − α

(α > 0), (11)

where α is the elasticity of marginal utility of consumption. This is the so-called power function. Many authors, including
Nordhaus, select this function. All parameter- and initial values are the same as in DICE-2016R.

3. Introducing stochasticity

We now introduce uncertainty in the DICE model, focussing on the uncertainty about the economic impact of future
climate change. Uncertainties can arise in many ways. Gillingham et al. (2015) distinguish between seven types of
uncertainties including most notably parametric uncertainty, such as uncertainty about the climate sensitivity parameter;
model or specification uncertainty, such as the specification of the aggregate production function or the damage function;
measurement error, for example related to the level and trend of global temperature; and random errors in structural
equations, for example due to weather shocks.

We shall study the impact of stochasticity in four scenarios, defined by adding four random shocks uj,t (j = 1, . . . , 4)
to the condensed system (1)–(7), as follows:

(i) Uncertainty through the damage-abatement fraction dt = 1 − ωt − ξH2
t in (6) by modifying dt to d̄t = dtu1,t ;

(ii) Uncertainty in the damage parameter by modifying ξ in (6) to ξ̄t = ξu2,t ;
(iii) Uncertainty in the emissions-to-output ratio by modifying σt in (3) to σ̄t = σtu3,t ; and
(iv) Uncertainty through technological efficiency by modifying At in (1) to Āt = Atu4,t .

We specify the shocks uj,t as

uj,t = e−τ2j /2eτjϵj,t (j = 1, 2, 3, 4), (12)

where the normalizing constants e−τ2j /2 are chosen such that E(uj,t ) = 1 when ϵj,t ∼ N(0, 1). We never change the
parameters of a given probability distribution of ϵj,t , we only vary the level of τj. Also, note that under scenario (ii), when
the temperature change is zero, there is no uncertainty.

The general model formulation resulting from these four scenarios encompasses a rich spectrum of uncertainties:
we can use it to examine how damage and mitigation uncertainty interact with climate change policies, but also how
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uncertainty in productivity or in the emissions-to-output ratio interacts with such policies. Thus we obtain a stylized
stochastic IAM of climate economics, to which we refer as SDICE* (= stochastic DICE).

Uncertainty in the damage parameter ξ (scenario (ii)) has been considered by Keller et al. (2004), Ackerman et al.
(2010), Dietz (2011), Hwang et al. (2013), Berger et al. (2017), and Howard and Sterner (2017). The impact of uncertain
technological efficiency (scenario (iv)) is studied by Cai et al. (2012) and Jensen and Traeger (2014a), and its importance is
emphasized by Gillingham et al. (2015). Uncertainty in the emissions-to-output ratio (scenario (iii)) has not received much
attention. Uncertainty in the abatement cost has been studied in Hwang et al. (2013). We first focus on the combined
uncertainty of damage and abatement, as specified in scenario (i), but later we shall discuss all scenarios.

We shall consider both light- and heavy-tailed risk. If the ϵj,t are independent and identically distributed (iid) and
follow a normal distribution N(0, 1), then the moments of uj,t exist, and we have E(uj,t ) = 1 and var(uj,t ) = eτ

2
j −1. Since

the distribution of uj,t is heavily skewed, more uncertainty (higher τj) implies more probability mass of uj,t close to zero.
If, however, we move away from the normal distribution and assume, e.g., that ϵj,t follows a Student distribution with
any (finite) degrees of freedom, then the expectation is infinite (Geweke, 2001). The analysis in, among others, Weitzman
(2009), Dietz (2011), Pindyck (2011), Buchholz and Schymura (2012), and Hwang et al. (2013) suggests that heavy-tailed
risk plays an important role in the economics of climate change.

If τj > 0 then the assumption of iid distributed errors ϵj,t is sufficient to generate the possibility of incompatibility
between preferences and distributional assumptions, as discussed and proved in Section 5. Provided the compatibility
conditions are satisfied, the algorithm we propose in Section 4 can also handle more sophisticated error assumptions.

4. Optimization problem and solution algorithm

In this section we discuss a class of stochastic dynamic finite-horizon optimization problems to which the SDICE* model
in Section 3 belongs as a special case, and develop a regression-based method to solve such problems. We first introduce
some notation, define our general class of optimization problems, and show how it encompasses SDICE* as a special case.
Then we design a regression-based algorithm to numerically solve optimization problems in this class. The optimization
problem that we consider is a challenging one, because of the nonlinearities induced by the economy–climate model,
the desired generality of preferences and beliefs, and the aim to accurately capture tail-risk behavior far away from a
rapidly evolving steady state. We shall indicate how our solution algorithm deals with each of these challenges. In the
final subsection we compare our method with a standard solution approach.

4.1. SDICE* as a stochastic dynamic finite-horizon optimization problem

The social planner in SDICE* faces a discrete-time stochastic dynamic finite-horizon programming problem, which
consists of maximizing expected total discounted welfare W given in (10) subject to the SDICE* model specified in the
condensed system of equations (1)–(7) and including one (or several) of the four shocks specified in Section 3.

To facilitate the discussion of our optimization problem, we express it using the nomenclature of dynamic optimization;
see, e.g., Bertsekas (2005) or Powell (2011). We start by considering a discrete-time setup with control variables, state
variables, and stochastic drivers, adapted to an underlying filtered probability space. The time-t state variables are stacked
into a vector xt , the time-t control variables into a vector zt and the time-t stochastic drivers into a vector ϵt . In SDICE*, the
prime state variables are the capital stock Kt , temperature Ht , and carbon dioxide concentrations Mt , and the auxiliary
variables (M (s)

t ,M
(l)
t ,H

(l)
t ). The prime control variables are consumption Ct and the abatement fraction µt . Stochasticity

enters SDICE* through ϵt = (ϵ1,t , ϵ2,t , ϵ3,t , ϵ4,t ), where j = 1, . . . , 4 refers to the scenario through which we introduce the
stochasticity.

For given values of (xt , zt , ϵt ), and given the exogenous variables and parameters at time t , all other endogenous
variables in the model are supposed to be known at time t . In SDICE*, the exogenous variables and parameters are: the
initial values of the state variables, (K1,H1,M1,M

(s)
1 ,M

(l)
1 ,H

(l)
1 ), the time-varying exogenous stock variables and parameters

(At , Lt , ψt , σt , E0
t , Ft ), the time-invariant parameters (γ , δ, ρ, φ, ξ, θ, a0, a1, a2, a3, b0, b1, b2, b3), and the stochasticity

parameters (τ1, τ2, τ3, τ4). The remaining endogenous variables in the model – investment It , emissions Et , the abatement
cost fraction ωt , welfare Wt , and output Yt – are determined by the prime control and state variables, the exogenous
variables, and the parameters. For example, the control variable investment, It , is obtained from the budget constraint (6)
and the state variable GDP, Yt , follows from the identity (1). Similarly, explicit expressions depending on the prime state
and control variables and stochastic drivers are obtained for all other state and control variables that are not contained in
xt or zt under SDICE*. Given the controls, the discrete-time process of state variables is assumed to be a controlled Markov
process. The Markov property is essential in our development. For ease of exposition we assume in the present section
that the {ϵt} are independent over time, but this assumption can be relaxed. (Removing the requirement that the {ϵt} are
independent over time means that the value function and its approximation at time t introduced below will explicitly
depend on the stochasticity vector ϵt−1.)

In general, the system of prime state variables evolves dynamically according to a sequence of vector functions ft taking
values on the support of xt :

xt+1 = ft (xt , zt , ϵt ).
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By allowing ft to be a time-varying function, we accommodate arbitrary time paths for exogenous variables and
parameters.

The decision maker seeks to implement the optimal policy, while satisfying the constraints imposed by the model. The
constraints on the time-t control variables zt are represented by a time-varying set Zt (xt , ϵt ) that depends in particular
on the current value of the state vector xt and the stochastic driver ϵt . Maximization is then over

zt ∈ Zt (xt , ϵt ). (13)

For the first twenty periods of the SDICE* model with uncertainty as in scenario (i), this set of constraints specializes to:

0 ≤ Ct ≤
(
1 − ωt − ξH2

t

)
AtK

γ
t L

1−γ
t e−τ21 /2 eτ1ϵ1,t

and

0 ≤ µt ≤ 1;

see also (17). For scenarios (ii) and (iii), the first constraint will incorporate uncertainty in a different manner. For later
time periods, the second constraint is modified to 0 ≤ µt ≤ 1.2.

The decision maker’s objective is to maximize his/her evaluation of a stream of payoffs (or rewards) by optimally
selecting the control variables. Denote by Vs (1 ≤ s ≤ T ) the maximum of the evaluation of the payoff stream collected
in periods s through T , given all the information available at time s − 1 and subject to the constraints in (13):

Vs(xs) = max
zs,...,zT

Es−1

[
T∑

t=s

gt (zt )

]
(14)

subject to{
zt ∈ Zt (xt , ϵt ) (s ≤ t ≤ T ),
xt+1 = ft (xt , zt , ϵt ) (s ≤ t ≤ T − 1),

where gt is the decision maker’s time-t specific objective function and Es is short-hand notation for the conditional
expectation with respect to the filtration at time s. We note that, given the information at time s− 1, the vector function
fs−1 dictates the prime state variables at time s (but not the control variables). Therefore, optimization for period s can be
based upon the conditional expectation at time s−1. The function Vs is referred to as the value function. The corresponding
Bellman equation is given by

Vt (xt ) = max
zt∈Zt (xt ,ϵt )

Et−1 [gt (zt ) + βVt+1(ft (xt , zt , ϵt ))] , (15)

where β is a discount factor (0 < β < 1). The time-t objective function gt (zt ) in the SDICE* model is given by

gt (zt ) =
Lt U(Ct/Lt )
(1 + ρ)t

,

where U is the utility function. The discount factor in SDICE* is equal to β = 1/(1 + ρ).
If the value function in period t + 1 is known, then Eq. (15) is a static optimization problem in the time-t control

variables zt . The connection between the value function at time t and the value function at time t + 1, as stipulated
by the Bellman equation, allows the decision maker to maximize his/her evaluation recursively by backward induction.
Indeed, because all variables including the realizations of stochasticity are observed in each period, the decision maker
first determines the optimal control variables in the final period, depending on the other variables and parameters in the
model at that time. Then the decision maker maximizes the sum of that part of the evaluation that pertains to time T −1
and the discounted future value function, thus proceeding backwards in time.

4.2. Solution algorithm: generic description

We will solve the Bellman equation numerically. Our approach to the computation of the optimal policies is inspired
by the Least Squares Monte Carlo (LSMC) approach introduced by Longstaff and Schwartz (2001) in the context of
optimal stopping for American-style derivatives and adapted here to our discrete-time dynamic stochastic finite-horizon
optimization problem; see also Carriere (1996) and Tsitsiklis and Van Roy (1999).

While it may seem natural to consider all potential future paths of the variables in our model when conducting
optimization, this readily becomes ineffective in multiple dimensions and over longer time spans, which is the situation
we face in our application. We therefore propose a method based on Monte Carlo where we simulate a set of future
paths of the state variables and stochastic drivers, and then invoke regression to obtain estimates of the value function in a
recursive fashion. By relying on forward-simulated paths, our method is relatively efficient. Moreover, because of the use of
regression methods, the method does not require nested simulation, and hence is computationally fast. A potentially even
more efficient approach may be to select fewer but better nodes for approximation and thus economize on the number of
generated paths, as in Cai et al. (2012) and Traeger (2014). We do not pursue this. Methods to handle high-dimensional
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problems, for example with adaptive sparse grids, are discussed in Brumm and Scheidegger (2017), but the dimensionality
of our setting is only six so we do not pursue this either. Moreover, a variety of numerical approaches for infinite-horizon
problems is available, in particular in the DSGE literature. Examples of such approaches and problems are King and Rebelo
(1999) who accommodate stochastic trends via an equivalent representation without trending variables in the context of
technology shocks and real business cycles, and Schmitt-Grohé and Uribe (2004) who consider a stochastic production
economy with sticky product prices. Our setting differs from these approaches and problems due to at least one of the
following three features: (i) our problem is a finite-horizon problem with general preferences and beliefs; (ii) our problem
is highly non-stationary; (iii) we are interested in a solution at (a) specific time period(s), not necessarily in the steady
state, and not only in the center of the distribution, but also at the edges.

We start in the final period T where the value function is given by

VT (xT ) = max
zT∈ZT (xT ,ϵT )

ET−1[gT (zT )]. (16)

Indeed, for our finite-horizon model, the payoff in periods after time T is equal to zero. This implies that VT+1(xT+1) = 0,
so that the Bellman equation in (15) simplifies to the Bellman equation in (16) at time T .

At time T (and similarly for earlier time periods), our algorithm then consists of four steps, as follows.

(a) First we use a random number generator to draw R values (xrT , ϵ
r
T ) for r = 1, . . . , R. For SDICE*, ϵrT is drawn from

a probability distribution prespecified in the model, while the value of the state vector xrT is drawn from a uniform
distribution with a wide support. This support is centered at the optimal value of the state vector in the deterministic
version of the model (DICE). The two (multivariate) draws are independent.

(b) Next, for each r , we compute the deterministic quantity vrT as the maximum value of the period-T objective function
given the rth draw (xrT , ϵ

r
T ). This specific optimization problem is typically straightforward at time T . For example,

in the SDICE* model, consumption is set equal to the available budget in the final period, and abatement is set to
zero.

(c) We then use regression to approximate the function VT (xT ). To obtain the approximation, we assume that there
exists a set of basis functions φj(xT ) and coefficients βj,T (j = 0, 1, 2, . . . ) such that

VT (xT ) =

∞∑
j=0

βj,Tφj(xT ), and VT (xT ) ≈

J∑
j=0

βj,Tφj(xT ), J ∈ N>0,

can serve as an approximation, and, for each r , we decompose the deterministic maximum vrT into the sum of this
approximation and an (r)-specific disturbance νr,T , that is,

vrT =

J∑
j=0

βj,Tφj(xrT ) + νr,T .

Note that setting φ0(xT ) = 1 corresponds to including a constant term β0,T in the approximation.
(d) Finally, we obtain least-squares estimates of the coefficients in this approximation, which we denote by β̂j,T (j =

0, . . . , J), and we define

V̂T (xT ) =

J∑
j=0

β̂j,Tφj(xT )

as our approximation to the value function at time T .

Now consider period T − 1. The corresponding Bellman equation is

VT−1(xT−1) =

max
zT−1∈ZT−1(xT−1,ϵT−1)

ET−2 [gT−1(zT−1) + βVT (fT−1(xT−1, zT−1, ϵT−1))] .

The algorithm then proceeds as above in four steps: (a) generate draws (xrT−1, ϵ
r
T−1) for r = 1, . . . , R; (b) given the rth draw

(xrT−1, ϵ
r
T−1), compute the deterministic maximum vrT−1, using the approximation V̂T obtained above; (c) obtain estimates

β̂j,T−1 for the coefficients βj,T−1 in

vrT−1 =

J∑
j=0

βj,T−1φj(xrT−1) + νr,T−1,

using least squares; and (d) define the approximation V̂T−1(xT−1) to the value function at time T − 1 as

V̂T−1(xT−1) =

J∑
j=0

β̂j,T−1φj(xT−1).
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Next, we approximate the value function in period T −2, and so on. In this way we define, recursively, the value function
V̂t for all the time periods t = 1, . . . , T in the model. We thus obtain a flexible least-squares Monte-Carlo-based approach,
which accommodates general preferences and beliefs, is easy to implement, and is effective and efficient.

Partial convergence results for Least Squares Monte Carlo in the context of optimal stopping and American option
pricing are provided by Longstaff and Schwartz (2001); see also Tsitsiklis and Van Roy (1999). These results are
significantly expanded by Clément et al. (2002); see also Egloff (2005) and Egloff et al. (2007). Their formal results
can be adapted to our discrete-time optimal control setting, and this allows us to conclude that the regression-based
approximations to the optimal control variables resulting from our approach converge to the optimal control variables
as the number of simulations and the number of basis functions (in this order) tend to infinity. The proof is somewhat
tedious but conceptually straightforward, and proceeds by showing first that the regression estimates converge using
standard asymptotic regression theory, and next (more tedious) that the error propagation resulting from the backward
induction procedure vanishes asymptotically.

4.3. Some practical aspects of the algorithm

The previous subsection provides a generic description of a numerically efficient algorithm, which computes the
solution to a class of discrete-time stochastic dynamic finite-horizon optimization problems. In our application of this
algorithm to the SDICE* model, our goal is to accurately capture the nonlinear behavior of the model as well as its tail risk
behavior potentially far away from a rapidly evolving steady state. For this reason, the support from which we generate
values for the state variables must be sufficiently wide. In addition, we need a flexible approximation to Vt over this wide
support. We now describe some further details specific to the implementation of our algorithm.

The support. We need to specify the support from which we draw xrt . This support must be wide enough to capture
optimal policies away from the steady state, because we are specifically interested in optimal policies in the presence of
large negative shocks, i.e., under catastrophic risk, and we want our approximation to the optimal policies to be accurate
in such scenarios. Let x∗

t denote the state vector under the optimal solution to the deterministic version of the model
(DICE). We draw xrt from a uniform distribution with support [0.5x∗

t , 2.5x
∗
t ]. Taking the support even wider does not help

our solution: the optimization routine never evaluates values of the state variables outside those intervals. The first period
is of particular importance, as we will investigate in detail the distribution of the optimal policies under large negative
shocks in that period. In period 1, capital is equal to K1 = 223. The specified support for K2 is now given by [134.2, 671.2].
Even under very large shocks in period 1, the lower bound of the support is never binding for the optimal choice of K2.

Number of time periods and draws. We must also specify the number of time periods for which we solve the model and
the number of simulation draws R to be drawn in every time period (each time period consists of five years). We solve
the model for T = 100 time periods. We ignore uncertainty in periods 21 through 100. We report results at the center for
periods 1, 6, 11, 16, and at the edges in periods 1 and 2. We experimentally determine that considering stochasticity for
more than 20 periods does not affect our reported results: the reported results do not change if we increase the number
of periods with stochasticity to 30 or 40.

An elegant alternative way to formulate the economy–climate problem would be to set it in an infinite-horizon
framework, and to solve it on small time-steps to approximate the continuous-time solution, as in Cai et al. (2012)
and Traeger (2014). However, because we wish to stay close to our starting point given by the benchmark DICE model,
we adopt the same time-steps and finite-horizon formulation as in DICE.

The value of R used for the first 20 periods has been determined by trial and error. We started with R = 1,000
simulations per period, and then assessed whether the solution is sensitive to increases in R using steps of 1,000. After
R = 5,000, the change in optimal consumption was less than 0.01. We then conservatively set R = 10,000. Such a large
value for R is feasible because our regression-based approach avoids nested simulation. This is not only useful to capture
tail risk behavior but also to accommodate general preferences and beliefs. Similarly, for periods 21 through 100, we find
that results are not sensitive to increasing the number of draws beyond 200. We conservatively set R = 1,000 for those
periods.

Basis functions. The selection of the basis functions in the approximation of the value function is an important ingredient
of our procedure. We use polynomials as basis functions. To select the order of the polynomials, and to select which
interactions terms to include in our model, we proceed in three steps. First, we use a model selection approach to choose
the order of the polynomial. Second, we use model selection to choose a set of interaction terms. Both steps are performed
using power utility. In a third step, we repeat the first two steps under Pareto utility.

Let us now describe each of the three steps in more detail. We start by solving the DICE model for all time periods
under power utility using as basis functions only a constant term and one linear function for each state variable. For that
solution, we measure the fit of the value function approximation in each time period by computing the adjusted R-squared,
Akaike’s Information Criterion, and the leave-one-out cross-validation criterion. Next, we solve the model using as basis
functions a constant term, and a linear and quadratic function in each state variable, and record the same criteria in each
time period. We repeat this for increasing sets of basis functions, up to polynomial order 8.

The following conclusions hold for each of the three criteria: (i) inclusion of the auxiliary state variables (M (s)
t ,M

(l)
t ,H

(l)
t )

does not reduce the criteria, and occasionally leads to numerical instability; (ii) a fourth-order polynomial in (Kt ,Mt ,Ht )
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Fig. 1. Akaike’s Information Criterion (AIC) for the sets of basis functions up to polynomial order 5 against the time period.

outperforms lower-order polynomials in all time periods; (iii) a fifth-order polynomial is competitive with the fourth-
order polynomial in later time periods (t > 15) but not in the early time periods. (iv) numerical instability is more
serious for polynomials of order greater than 5, while those specifications do not improve the criteria relative to the
fourth-order polynomial. This is visualized in Fig. 1, where we plot Akaike’s Information Criterion (AIC) for the sets of
basis functions up to polynomial order 5, against the time period. (Plots for the other criteria are similar.) Because the
criteria are computed over discrete time periods, the curves are somewhat granular rather than smooth. On the basis
of these findings, we proceed to the next step of our model selection procedure using the fourth-order polynomial in
(Kt ,Mt ,Ht ).

In the second step, we repeat this procedure by gradually adding interaction terms to the fourth-order specification
selected in step 1. We solve the model using a fourth-order polynomial augmented by interaction terms with a combined
degree of 2, i.e., KtMt , KtHt , and MtHt . This leads to improved criteria in all time periods. For example, the adjusted
R-squared, averaged across time periods, is improved from approximately 0.9995 to 0.9999. We then solve the model
again after adding further interaction terms with a combined degree of 3, e.g., K 2

t Mt . This improves the criteria in almost
all time periods, although the performance gain is much smaller. Adding further interaction terms leads to numerical
instability in the early periods, without improving the criteria in the later periods. We illustrate this in Fig. 2, where we
plot the AIC for the sets of interaction terms up to a combined degree of 3, against the time period. (Plots for the other
criteria are similar.)

As a third step, we apply the procedure outlined above to the model with Pareto utility. For both steps, we reach the
same conclusion as in the power utility case. The adjusted R-squared exceeds 0.9999 in all time periods for the selected
sets of basis functions. In view of the fact that we simulate the state variables in the regression and their realizations lie
in a very large interval with a substantial fraction far away from the center (see above sub ‘The support’), this suggests
in particular that our approximation to the value function is good also at the edges. As a result, we choose a fourth-order
polynomial with interaction terms up to a combined degree of three for all of the numerical results in this paper.

Code and testing details.
The code is written in Julia and is available from the authors upon request. It was tested with Julia version 0.6.2,

on a desktop computer with Core i5-6300U architecture running Windows 10.

4.4. Comparison to standard algorithms

We briefly compare our algorithm with a more standard solution approach. We shall do so in a simplified setting
without climate. More specifically, we shall use the same model and identical values of all time-varying and time-invariant
parameters, except that we set ωt = 0 for all t and also ξ = 0. These conditions imply that climate plays no role. In this
experiment, utility is always power utility and welfare is defined as before; see (9)–(11). Uncertainty enters through
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Fig. 2. Akaike’s Information Criterion (AIC) for the sets of cross terms against the time period.

technological efficiency as described in scenario (iv) of Section 3. Thus, we modify At to Āt = Atu4,t , where u4,t is defined
in (12).

In order to compare our algorithm (described in Sections 4.2 and 4.3) to a ‘standard’ algorithm, we need to define what
we mean by a ‘standard’ algorithm. We first consider a deterministic version of the model with T periods and, for any t ,
J values of the discretized state variable Kj ∈

{
K1, . . . , KJ

}
. In this simplified setting without climate, the state variable

capital fully dictates the control variable investment, and hence consumption, via the budget constraint.
We start in the final period T . For any Kj, the value function is given by

vT
(
Kj

)
= LTU

(
ATK

γ

j L
1−γ
T /LT

)
.

Given a solution in period t + 1, the standard algorithm moves one period back to period t and solves for the value
function vt (·) at each grid point Kj. This involves selecting the maximum over a finite set:

vt
(
Kj

)
= max

Km∈{K1,...,KJ}
LtU

(
AtK

γ

j L
1−γ
t /Lt

)
+ βvt+1 (Km) .

We repeat this backward induction until we arrive at period 1. To introduce stochasticity, we draw, for each period and
each Kj, S error terms u(s)

4,t (s = 1, . . . , S) and solve the corresponding step. With the exception of the final period, this
requires for each (s, j, t) to take the maximum over J points on the grid (i.e., over the next period’s value function for
each possible value of Km on the grid). For each (j, t), we compute the estimate of the value function by averaging across
the S draws.

We assume normal errors ϵ4,t , and we let T = 5 and τ = 0.2. To implement the standard grid approach we let
200 ≤ Kj ≤ 2000 with a stepsize of 20, so that Kj = 200, 220, . . . , 2000. For our algorithm we take six polynomial
basis functions, like previously. For our algorithm we use 50,000 simulations. For the standard algorithm we distinguish
between two cases: coarse (1,000 simulations) and fine (20,000 simulations).

The results are summarized in Fig. 3, where we present the estimated value functions of period 4 for four different
cases: the standard algorithm for the deterministic model (6.1 s), our algorithm for the stochastic model (3.8 min), and
the standard algorithm for the stochastic model either coarse (4.7 min) or fine (1 h 36 min). We find that for about the
same amount of computation time, our algorithm is much less volatile for the estimated value function. Using a larger
number of simulations leads to a less volatile solution, but at the cost of additional computation time. The computation
time is linear in the number of simulations.

This experiment has been conducted in a stylized setting. For a satisfactory solution of the full model as used in this
paper, the relative performance of the standard algorithm would deteriorate much further, because we then need to
consider one hundred rather than five periods and three rather than two control variables. Furthermore, we would need
a much finer grid to accurately capture what happens to utility when consumption becomes small (in the tails) and
marginal utility large, which is the interest in our paper.
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Fig. 3. Comparison of standard algorithm to our algorithm.

5. Compatibility of preferences and stochasticity

Considerable care is required when combining the expected utility paradigm with distributional assumptions, a fact
known since Bernoulli (1738) and Menger (1934). The numerical methods developed in Section 4 are valid, in principle,
for general expected utility preferences, but this is only true if these preferences are compatible with the assumed
stochasticity. If not, then expected utility or expected marginal utility can become infinite, a situation which we wish to
avoid. Hence, if only weak assumptions on the stochasticity are imposed, then some compatibility conditions are required
to ensure that our model’s stochastic optimization problem is well posed. In fact, we shall place no restrictions on the
stochasticity and allow for arbitrarily heavy-tailed risks. Not all families of utility functions are then compatible and this
raises the question: which families of utility functions are and which are not compatible with arbitrarily heavy-tailed
risks? To answer this question we invoke the general decision-theoretic results of Ikefuji et al. (2015) and apply these to
SDICE*, using backward induction.

We know from Sections 2 and 3 that consumption is bounded by

0 ≤ Ct ≤ Ct + It =
(
1 − ωt − ξH2

t

)
AtK

γ
t L

1−γ
t u1,t

≤ AtK
γ
t L

1−γ
t u1,t = AtK

γ
t L

1−γ
t e−τ21 /2eτ1ϵ1,t , (17)

since It ≥ 0, ωt ≥ 0, and ξ > 0. Note that u1,t > 0 (with probability one) and that AtK
γ
t L

1−γ
t is positive for all t . The

last statement follows because the exogenous variables At and Lt are assumed to be positive for all t; the parameter δ
satisfies 0 < δ < 1; the initial condition K1 > 0 holds; and Kt ≥ (1 − δ)t−1K1 > 0 since It ≥ 0. Now, because At and Lt
are exogenous, and Kt is deterministic given all information at time t − 1, since Kt depends on Kt−1 and It−1, AtK

γ
t L

1−γ
t is

deterministic given all information at time t − 1.
Since the social planner in our setup has time-additive expected utility preferences, the inequality (17) implies that

inequality (2) in Ikefuji et al. (2015) would be satisfied if Ct were the only choice variable. In fact, there are three choice
variables: It , µt , and Ct . It is obvious, however, that in the final period zero abatement and zero investment are optimal:
I∗T = µ∗

T = 0. Hence, in the final period there is only one choice variable, namely CT , and hence the desired inequality is
satisfied at time T .

We can now invoke Proposition 5.2 of Ikefuji et al. (2015), apply it to the final two periods in our setup, and conclude
that if the probability distribution of ϵ1,T is heavy-tailed to the left, then expected marginal utility (or the expected
intertemporal marginal rate of substitution) pertaining to time T is infinite whenever the utility function belongs to the
power family. Thus, if we move only slightly away from normality and allow ϵ1,T to follow, e.g., a Student distribution
with any degrees of freedom, then expected marginal utility explodes under power utility. A similar result is true for
expected utility instead of expected marginal utility, but we shall not expand on this. Note that what is relevant here is
whether ϵ1,T (not exp(ϵ1,T )) is heavy-tailed to the left or not. If ϵ1,T is heavy-tailed rather than light-tailed to the left, then
exp(ϵ1,T ) has, loosely speaking, more probability mass near zero.
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The fragility of expected power utility to heavy-tailed distributional assumptions was noted earlier, e.g., by Geweke
(2001). More recently, in the context of catastrophic climate change, Weitzman (2009) pointed out that not only expected
utility but also expected marginal utility, and hence the intertemporal marginal rate of substitution, may become infinite
with power utility and heavy-tailed log consumption, inducing unacceptable conclusions in cost–benefit analyses.

Because of the incompatibility of power utility we need to look for a different family of utility functions to represent
preferences over heavy-tailed risks in SDICE*. The Pareto family, introduced by Ikefuji et al. (2013) and given by

U(x) = 1 −

(
1 +

x
λ

)−k
(k > 0, λ > 0), (18)

enjoys a combination of appealing properties especially relevant in heavy-tailed risk analysis. These properties were
primarily normatively motivated but also have some empirical support (see Ikefuji et al. 2013, p. 45). Let

ARA(x) = −
U ′′(x)
U ′(x)

, RRA(x) = −
xU ′′(x)
U ′(x)

(19)

denote the local indexes of absolute and relative risk aversion. Under Pareto utility,

ARA(x) =
k + 1
x + λ

, RRA(x) =
x(k + 1)
x + λ

, (20)

so that 0 < ARA(0) < ∞ and ARA(x) is non-negative decreasing and convex, while RRA(0) = 0 and RRA(x) is increasing
concave and bounded between 0 and k + 1. Notice that the property that RRA(0) = 0 does not imply risk-neutrality at
x = 0, since ARA(0) = (k + 1)/λ > 0.

The family of Pareto utility functions is parsimonious yet flexible. Pareto utility avoids the drawbacks that the popular
families of power (constant RRA) and exponential (constant ARA) utility exhibit ‘near the edges’. This includes both the
extreme behavior of power utility near the origin, where ARA becomes infinite, and the extreme behavior of exponential
utility for large x, where RRA increases without bound. In view of Propositions 5.1–5.3 in Ikefuji et al. (2015), Pareto
utility is particularly appropriate for heavy-tailed risk analysis. It ensures finiteness of both expected utility and expected
marginal utility, irrespective of distributional assumptions; see also the discussion in Cerreia-Vioglio et al. (2015).

In particular, Proposition 5.2 (or 5.3) of Ikefuji et al. (2015) implies that, under Pareto utility, expected marginal utility
remains finite for any t . Hence, the expected intertemporal marginal rate of substitution that trades off current and future
consumption remains finite under Pareto utility. Because of the boundedness of Pareto utility (cf. Proposition 5.1 of Ikefuji
et al. (2015), we see that expected utility also remains finite under Pareto utility, irrespective of distributional assumptions.
We conclude that the Pareto family represents a suitable choice of utility functions when analyzing heavy-tailed risk in
SDICE*.

6. Main findings

We now have a stochastic economy–climate framework and a solution method, and this permits a variety of
applications and analyses, including exploring fundamental questions such as whether the social planner would abate
and invest more or less, and how much, in the presence of uncertainty or under the manifestation of catastrophic risk.

When interpreting the results, it is important to understand whether the results obtained from IAMs have a normative
or a descriptive meaning. While climate models are typically interpreted descriptively, the use of optimization suggests a
normative perspective. Gordon et al. (1987) noted, however, that the results derived from IAMs provide an approximation
to an economically efficient market equilibrium, and therefore do not have a normative meaning per se.

In the current section, we numerically solve and analyze the base SDICE* model given by scenario (i) with a simple iid
specification of stochasticity. In Section 6.1 we discuss the parameter choices pertaining to the preferences (i.e., the social
planner’s utility function) and beliefs (i.e., the probability distribution of the shocks), and in Section 6.2 we compare the
results of Nordhaus’ solution to DICE, our solution to DICE, referred to as DICE*, and DICE* under Pareto utility instead of
power utility; all in a deterministic setting.

Then we introduce stochasticity. In Section 6.3 we analyze the effects of uncertainty on the optimal abatement,
consumption, and investment policies, focusing on optimal policies along the expected trajectory of the shocks, i.e., in the
‘center’ of the probability distribution. In Section 6.4 we explore the effects at the ‘edges’ of the probability distribution,
that is, we ask what happens to the optimal policies upon the manifestation of a large negative shock. In Section 6.5 we
analyze the effect of heavy-tailed versus light-tailed uncertainty.

In Section 7 we shall consider extensions to the base SDICE* model, allowing in particular for an uncertain damage
parameter, uncertainty in the emissions-to-output ratio, and uncertainty through technological efficiency.

6.1. Setting and base parameters

We shall consider both light-tailed and heavy-tailed probability distributions for the error terms ϵj,t , j = 1, . . . , 4.
Following our discussion in Section 3, we consider both a normal distribution (light tails) and a Student distribution (heavy
tails). Under normality, the damage-abatement fraction d̄t = dtu1,t has a finite expectation. Under a Student distribution,
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Table 1
State variables — DICE vs DICE*, power vs Pareto.
State variable Model Utility 2015 2040 2065 2090

DICE Power 2.120 2.429 2.457 2.488
Capital DICE* Power 2.120 2.328 2.421 2.491
(Kt/Yt ) DICE* Pareto 2.120 2.037 2.128 2.228

DICE Power 8.091 4.938 3.108 2.084
Concentration DICE* Power 8.091 4.943 3.035 2.018
(Mt/Yt ) DICE* Pareto 8.091 5.342 3.378 2.331

DICE Power 0.850 1.694 2.525 3.247
Temperature DICE* Power 0.850 1.673 2.460 3.148
(Ht ) DICE* Pareto 0.850 1.698 2.555 3.361

Table 2
Control variables — DICE vs DICE*, power vs Pareto.
Control variable Model Utility 2015 2040 2065 2090

DICE Power 0.738 0.819 0.798 0.778
Consumption DICE* Power 0.762 0.824 0.798 0.777
(Ct/Yt ) DICE* Pareto 0.799 0.862 0.830 0.803

DICE Power 0.317 0.315 0.291 0.277
Investment DICE* Power 0.277 0.311 0.293 0.280
(It/Yt ) DICE* Pareto 0.217 0.275 0.265 0.256

DICE Power 0.000 0.002 0.004 0.007
Abatement cost DICE* Power 0.000 0.003 0.005 0.007
fraction (ωt ) DICE* Pareto 0.000 0.001 0.001 0.002

its expectation is infinite. Various routes lead to heavy-tailed distributional assumptions in economy–climate models.
For instance, light-tailed distributions for input variables may generate heavy-tailed distributions for output variables via
feedback loops (see e.g., Roe and Baker, 2007; and Mahadevan and Deutch, 2010). The heavy-tailed Student distribution
we employ can also be interpreted as the posterior predictive distribution of a normal distribution with uncertain standard
deviation as suggested in Geweke (2001), Weitzman (2009), and Pindyck (2011).

We need to specify adequate values for the uncertainty parameters τj and for the number of degrees of freedom of the
Student distribution. Let us consider τ4 first. The stochasticity generated by ϵ4,t captures uncertainty about technological
efficiency affecting GDP. Historical variation in GDP may therefore serve as a sensible proxy for τ4. Barro (2009) calibrates
the standard deviation of log GDP to a value of 0.02 on an annual basis, which corresponds to about 0.045 over a five-year
horizon. We will therefore consider values of τ4 in the set {0, 0.02, 0.04, 0.06}. Since scenario (iv) is related to scenarios (i),
(ii), and (iii) through (6) and (3), and also to make it possible to compare the impact of the four scenarios, we choose the
same range for τ1–τ3. Throughout this section we focus on uncertainty through the damage-abatement fraction (τ1 > 0,
τ2 = τ3 = τ4 = 0) and assume the errors to be iid. Other assumptions on τj, in particular (τ2 > 0, τ1 = τ3 = τ4 = 0),
(τ3 > 0, τ1 = τ2 = τ4 = 0), and (τ4 > 0, τ1 = τ2 = τ3 = 0), are postponed to Section 7.

We also need to consider the question of whether or not the stochasticity is light- or heavy-tailed. A (partial) answer
to this question is contained in Ursúa (2010), who claims that the growth rate of GDP features heavy tails. We choose
the number of degrees of freedom of the Student distribution equal to 10. Our parameter choices then ensure that the
summary statistics, including the ‘tail index’, of output growth rates generated by our model resemble those observed in
empirical data.

Finally, we need to specify values for the parameters of the utility functions. In the 2016 version of the DICE
model, Nordhaus uses a power utility function with constant relative risk aversion coefficient equal to α = 1.45. For
comparability, we choose the same value of α when we employ power utility. When we consider the Pareto utility
function, we wish to mimic power utility along the expected trajectory of ϵ1,t , i.e., in the center of the probability
distribution. With this objective in mind we calibrate the parameters of the Pareto utility function to κ = 1.322 and
λ = 0.0108.

6.2. DICE versus DICE*

In a nonstochastic world we find that the optimal policy and state variables under DICE closely match their counterparts
under DICE* with power utility. In fact, the maximum absolute difference is 0.1 over the period that we consider; see
Tables 1–2. The differences between DICE and DICE* are mainly due to differences in the solution method, the absence
of ad hoc bounds ‘for stability’ on some state and control variables in DICE*, and the absence of a heuristic (rather than
an optimal) solution for the last ten time periods in DICE*. We also note that abatement at time t = 1 is fixed at 0.03 in
DICE*, as in DICE.
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Table 3
SDICE* with normal errors — power vs Pareto, scenario (i).

Power Pareto

t\τ1 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

Consumption Ct
2015 80.18 80.26 80.31 80.34 84.02 84.06 84.07 84.06
2040 169.00 168.86 168.72 168.57 166.86 166.89 166.94 167.00
2065 306.44 307.13 307.75 308.38 301.58 301.88 302.29 302.73
2090 491.41 491.00 490.40 489.83 484.42 484.29 484.24 484.25

Investment It
2015 29.15 29.02 28.93 28.88 22.78 22.70 22.69 22.70
2040 63.82 63.93 64.14 64.39 53.22 53.18 53.21 53.31
2065 112.48 111.89 111.57 111.33 96.19 95.97 95.84 95.80
2090 177.25 177.46 178.03 178.69 154.34 153.94 153.91 154.02

Abatement µt
2015 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
2040 0.361 0.357 0.354 0.351 0.205 0.204 0.202 0.200
2065 0.523 0.517 0.511 0.506 0.323 0.318 0.312 0.307
2090 0.719 0.717 0.714 0.711 0.474 0.469 0.464 0.460

When we move from power utility to Pareto utility, we see that the optimal policy and state variables under DICE*
with Pareto utility match their counterparts under DICE* with power utility quite closely, and that this applies to both the
economy and climate parts of the DICE* model. A power utility maximizer consumes less and invests and abates more
compared to a Pareto utility maximizer. Indeed, a power utility maximizer has a stronger motive to avoid building up a
climate–economy with low damage-abatement reduced output, and therefore uniformly consumes less and invests and
abates more.

6.3. Light tails in the center

We now introduce stochasticity and consider the SDICE* model with iid normally distributed errors ϵ1,t (i.e., light tails),
for different values of the degree of uncertainty τ1, under both power and Pareto utility. (Recall that we assume τj = 0
for j = 2, 3, 4 in this section.)

We focus on the ‘center’ of the distribution by considering shocks along the expected trajectory of ϵ1,t . Specifically, the
results reported here are derived by solving for the optimal initial (t = 1) policies under uncertainty, and then computing
the optimal policies over the following periods 2 to 16 under uncertainty, by assuming that the realized shocks in the
previous periods are equal to zero.

The three panels in Table 3 present the results for optimal consumption, investment, and abatement, respectively. Our
benchmark is τ1 = 0, which is the case without uncertainty, that is, DICE*. The introduction of light-tailed uncertainty in
the damage-abatement fraction of DICE* leads to a reduction of abatement for both power and Pareto utility. Conditional
upon the shocks realizing their expected value, that is zero, we find a reduction in abatement in all periods. Consumption
and investment are relatively less affected.

Lower levels of abatement correspond to choosing higher levels of concentration, and this has a negative propagation
effect in our model. Conversely, investment has a positive propagation effect. When faced with uncertainty about the
damage-abatement fraction, the social planner sacrifices some abatement to maintain investment (first) and consumption
(later). In the presence of uncertainty, the power utility maximizer continues to consume less in early periods and invest
and abate more in all periods compared to the Pareto utility maximizer.

Overall, the effect of uncertainty on the optimal policies is small when considering a social planner at the center of the
probability distribution. Indeed, we find reasonably small changes in the optimal policy variables as long as the shocks take
values along their expected trajectory. The changes in optimal control and state variables are virtually always ‘monotonic’
in the variance of the shock as represented by τ1.

6.4. Light tails at the edges

In the previous subsection we evaluated the effect of uncertainty on the optimal policies in the center of the
distribution. Now we analyze the optimal policies at the ‘edges’, under the manifestation of catastrophic risk (that is,
tail events). In particular, we analyze how a realized shock impacts the optimal policies, under future uncertainty. (We
do not consider specific forms of learning whereby the social planner is more ‘on-edge’ because of a recent shock.)

Figs. 4 and 5 present optimal consumption C∗
t and optimal abatement µ∗

t as a function of ϵ1,t at time t = 1 and at
time t = 2, respectively (recall that abatement at time t = 1 is fixed), for both the power and Pareto SDICE* models.
Considering SDICE* against the benchmark given by DICE* but now allowing the light-tailed shocks to take large negative
values, we find that the optimal policy variables are more affected at the edges than in the center. In fact, towards the
edges we observe pronounced differences in the optimal policy variables, both within and between the SDICE* models.
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Fig. 4. Consumption C1: SDICE* with normal errors and τ1 = 0.00, 0.02, 0.04, and 0.06 — power vs Pareto, scenario (i).

Fig. 5. Abatement µ2: SDICE* with normal errors and τ1 = 0.02, 0.04, and 0.06 — power vs Pareto, scenario (i).

As expected, optimal policy derived under certainty – lines with label DICE* – does not respond to negative shocks.
A power utility maximizer has a stronger motive to abate as a precaution (cf. (Kimball, 1990) compared to a Pareto
utility maximizer, and this amplifies with adverse realizations of ϵ1,t . Under such adverse circumstances, the power utility
maximizer keeps abatement at a substantial level, but this comes at the cost of lower consumption. While the presence
of uncertainty reduces abatement (as found in Section 6.3), a power utility maximizer puts larger emphasis on keeping
up abatement in adverse circumstances compared to a Pareto utility maximizer.

6.5. Heavy tails

Heavy-tailed risk is represented by a Student-t distribution. The random shock ϵ1,t is not N(0, 1) anymore but rather
follows a t-distribution with 10 degrees of freedom, so that var(ϵ1,t ) = 1.25. Power utility is not compatible with heavy-
tailed risk: its expected intertemporal marginal rate of substitution trading off current and future uncertain consumption
is infinite. Hence, we only consider Pareto utility.

The three panels in Table 4 report optimal values in the SDICE* model under Pareto utility for consumption, investment,
and abatement, both for light- and heavy-tailed uncertainty, and for different values of τ1. In the center of the distribution,
the changes are small when we compare the impact of heavy-tailed versus light-tailed uncertainty. As in Sections 6.3 and
6.4, we observe a reduction in abatement under damage-abatement fraction uncertainty, we find reasonably small changes
in the optimal policy variables as long as the shocks take values close to or equal to their expectation (in the center of
the distribution), and we see that the changes are ‘monotonic’ in the variance of the shock.

We also report results at the ‘edges’. The changes in the optimal policy variables between the Pareto utility models
with light and heavy tails are virtually identical; see Fig. 6. This means that under heavy tails and towards the edges,
pronounced differences occur both within and between the power and Pareto models. Contrary to the ‘discontinuity’ that
occurs under power utility when we move from light to heavy tails, the Pareto utility maximizer only very slightly adapts
his/her optimal policies. In an influential paper, Weitzman (2009) indicated that power utility is fragile with respect to
heavy-tailed consumption risk, in the sense that expected marginal utility may become infinite. Our results confirm that
this is remedied when preferences are compatible with statistical assumptions, that is, by avoiding an ex ante incompatible
model specification.

In summary, under heavy tails the main findings of Sections 6.3 and 6.4 broadly remain valid, reinforcing their
robustness.
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Table 4
SDICE* under Pareto utility — light- vs heavy-tailed, scenario (i).

τ1 = 0.02 τ1 = 0.04 τ1 = 0.06

Light Heavy Light Heavy Light Heavy

Consumption Ct
2015 84.06 84.06 84.07 84.07 84.06 84.06
2040 166.89 166.89 166.94 166.94 167.00 167.00
2065 301.88 301.88 302.29 302.29 302.73 302.73
2090 484.29 484.29 484.24 484.24 484.25 484.25

Investment It
2015 22.70 22.70 22.69 22.69 22.70 22.70
2040 53.18 53.18 53.21 53.21 53.31 53.31
2065 95.97 95.97 95.84 95.84 95.80 95.80
2090 153.94 153.94 153.91 153.92 154.02 154.02

Abatement µt
2015 0.030 0.030 0.030 0.030 0.030 0.030
2040 0.204 0.204 0.202 0.202 0.200 0.200
2065 0.318 0.317 0.312 0.312 0.307 0.306
2090 0.469 0.469 0.464 0.464 0.460 0.459

Fig. 6. Abatement µ2: SDICE* under Pareto utility and τ1 = 0.02, 0.04, and 0.06 — normal (solid) vs Student (dotted), scenario (i).

7. Extensions

We generalize the base SDICE* model in three directions. First, we allow for uncertainty in the damage parameter;
next, for an uncertain emissions-to-output ratio; and finally, we allow for uncertainty in technological efficiency. The
discussion of these three extensions is brief to save space. Details are available from the authors upon request.

7.1. Uncertainty in the damage parameter

In this extension we consider parametric uncertainty by supposing that stochasticity enters SDICE* only through the
damage parameter. That is, we replace ξ in (6) by ξ̄t = ξu2,t and suppose τ2 > 0 while τ1 = τ3 = τ4 = 0. We explore
how this change in stochasticity impacts our three main findings in Sections 6.3–6.5.

In a setting that mimics Section 6.3, i.e., with ϵ2,t realizing its expected trajectory, we find that all the optimal policy
variables are now nearly insensitive to the presence of uncertainty. The reason is that, under the parameters and levels
of uncertainty that we consider, the term ξ̄tH2

t contributes relatively little to the budget constraint. Hence, the impact of
uncertainty about the damage-abatement fraction analyzed in Section 6.3 dominates the impact of uncertainty about the
damage parameter. The power utility maximizer continues to consume less in early periods and to invest and abate more
in all periods in comparison to the Pareto utility maximizer.

When tail events manifest themselves analogous to Section 6.4, optimal consumption reduces (increases) when ϵ2,1
takes large positive (negative) values, both under power and Pareto utility. Note that under the present scenario, ϵ2,t
taking large negative values is a prosperous event: it means that the realized damage parameter is low. This is illustrated
in Fig. 7. Furthermore, optimal abatement is still nearly insensitive even under large realizations of ϵ2,2 (whether positive
or negative).
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Fig. 7. Consumption C1: SDICE* with normal errors and τ2 = 0.02, 0.04, and 0.06 — power vs Pareto, scenario (ii).

Fig. 8. Abatement µ2: SDICE* with normal errors and τ3 = 0.02, 0.04, and 0.06 — power vs Pareto, scenario (iii).

Finally, we explore the impact of heavy-tailed risk associated to the damage parameter, adopting the same distribu-
tional assumptions as in Section 6.5. We find that the two previous results are reconfirmed: the near insensitivity of the
optimal policy variables in the center and the fact that optimal current consumption is decreasing (increasing) in the
extent of the positive (negative) shock in ϵ2,1.

7.2. Emissions-to-output uncertainty

We next suppose that τ3 > 0 and τ1 = τ2 = τ4 = 0, so that uncertainty enters SDICE* only through the emissions-
to-output ratio σt in (3), and not through the damage-abatement fraction and the budget constraint in (6), as previously.
We analyze how our three main findings in Sections 6.3–6.5 are affected under this alternative SDICE* model.

We consider first the optimal policies under iid normally distributed errors ϵ3,t , where we restrict our attention to the
center of the distribution by considering realizations of ϵ3,t along the expected trajectory, as in Section 6.3. All three policy
variables are now insensitive to the presence of uncertainty along the expected trajectory: the impact on the optimal
policies of uncertainty on the emissions-to-output ratio appears to be negligible in the center of the distribution. The
prime reason is that the budget constraint is not affected by uncertainty in the emissions-to-output ratio. Thus, in the
center, the effect of emissions-to-output uncertainty is dominated by the effect of uncertainty on the damage-abatement
fraction analyzed previously.

Next, considering the manifestation of tail events analogous to Section 6.4, we find an interesting pattern: while optimal
consumption remains relatively insensitive to uncertainty in the emissions-to-output ratio, also under tail scenarios,
optimal abatement decreases (increases) pronouncedly when ϵ3,2 takes large negative (positive) values under both power
and Pareto utility. This is illustrated in Fig. 8.

This pattern can be explained by the fact that, in the model, abatement directly ‘acts upon’ the emissions-to-output
ratio, while the latter does not appear in the budget constraint, contrary to what happens in Section 6.4. Note also that
the scenario in which ϵ3,2 takes large negative values is in fact a very prosperous (rather than adverse) scenario in which
emissions are relatively low compared to output, thus facilitating lower abatement.

Finally, we analyze the introduction of heavy-tailed risk attached to the emissions-to-output ratio, using the same
distributional assumptions as in Section 6.5. In this setting, the previous two findings are again reconfirmed: insensitivity
of the optimal policies along the expected trajectory and decreasing (increasing) optimal abatement in the extent of a
negative (positive) shock in ϵ3,2.
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Fig. 9. Abatement µ2: SDICE* with normal errors and τ4 = 0.02, 0.04, and 0.06 — power vs Pareto, scenario (iv).

7.3. Uncertainty in technological efficiency

We finally suppose that τ4 > 0 and τ1 = τ2 = τ3 = 0, which means that uncertainty enters SDICE* through
technological efficiency At in (1) and hence (6). This implies in particular that uncertainty appears again in the budget
constraint just like in Section 6, and the current extension can technically be viewed as a marriage between the settings
of Sections 6 and 7.2. We analyze again the impact of this alternative specification in the spectrum of uncertainties that
our model formulation accommodates on the three main findings in Sections 6.3–6.5.

With iid normally distributed errors ϵ4,t taking values along their expected trajectory, i.e., in a setting analogous to
Section 6.3, all three optimal policies under the current extension closely resemble those observed under the base SDICE*
model of Section 6.3. Intuitively, this follows from the insensitivities of the optimal policies along the expected trajectory
observed in Section 7.2 and the fact that the current extension is technically a marriage between the base model and the
first extension.

Next, when catastrophic risk realizes, that is, when ϵ4,t takes large negative values analogous to the analysis at the
edges in Section 6.4, optimal consumption responds exactly as in Fig. 4. However, optimal abatement, decreases with the
extent of the negative shock ϵ4,2 for both power and Pareto utility; see Fig. 9. The latter effect is in part induced by the
abatement results in Section 7.2, illustrated in Fig. 8.

Finally, analyzing heavy-tailed uncertainty in technological efficiency, employing the same distributional assumptions
as in Section 6.5, we recover the exact same pattern as in scenario (i).

Apparently, the impact of uncertainty is similar whether we model it through its impact in the damage-abatement
fraction or through technological efficiency. The key difference between the base SDICE* model and our third extension is
that, while uncertainty in the damage-abatement fraction increases optimal abatement for the power utility maximizer,
this effect is suppressed in adverse technology scenarios in which budgets and hence emissions are lower, thus facilitating
lower abatement.

8. Conclusions

We have developed a stochastic dynamic finite-horizon economic framework with climate change and a regression-
based method for numerically solving the associated optimization problem. Our framework (SDICE*) is based on Nordhaus’
deterministic DICE model, but it incorporates, possibly heavy-tailed, stochasticity. Upon applying our solution method to
SDICE* our analysis reveals that the introduction of uncertainty into a deterministic integrated assessment model can
have a substantial impact on the optimal policies of abatement, consumption, and investment, depending on the nature
and extent of the uncertainty and the social planner’s preferences.

A general criticism about integrated assessment models, whether deterministic or stochastic, is that some of the inputs
such as functional forms and parameters are to some extent arbitrary, and yet quite relevant for the outputs they predict.
This also applies to canonical benchmark integrated assessment models such as Nordhaus’ DICE model. SDICE* provides a
framework to assess the effects of a rich spectrum of uncertainties related to the complex interplay between climate and
the economy on the optimal consumption, investment and abatement policies. While we have made a significant effort to
calibrate our parameters to resemble e.g., output growth rates generated by our model, we prefer to interpret our results
not as direct literal policy implications, but rather as implications about the extent and sensitivity of the interactions
between the main variables of interest and about the roles played by the various variables, dynamic equations, functional
forms, and parameters.

The regression-based method we develop for solving a general class of stochastic dynamic finite-horizon optimization
problems relies on forward-simulated paths and avoids nested simulation. This makes our method relatively efficient and
we find that it competes favorably with standard solution approaches. To further improve efficiency, future work may
consider economizing on simulated paths by selecting fewer but better nodes.
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If we combine heavy-tailed uncertainty about climate change and its economic damage with an arbitrary utility
function, such as the conventional power utility function, we may be confronted with infinite expected marginal utility. In
that case, the model would predict that the social planner should reduce current consumption to ultra-low levels, in order
to limit the possibility of an economy–climate catastrophe. The resolution to this unacceptable conclusion in cost–benefit
analysis is to impose compatibility conditions on beliefs and preferences.

Our results show that introducing light-tailed uncertainty to a conventional economy–climate model with power
utility can yield reduced levels of current consumption, driven by a strong desire to save us from an economy–climate
catastrophe. This can be especially so under very adverse scenarios, in which a relatively strong substitution from current
consumption to precaution occurs. This effect is more limited under Pareto utility. These findings remain intact, and get
exacerbated, under heavy tails.

Conventional integrated assessment models can thus overemphasize precautionary action when they are confronted
with uncertainty and heavy tails.

Acknowledgments

We are very grateful to the editor of the Journal of Econometrics, to the editors of this special issue, and to three
referees for their constructive comments and suggestions that have significantly improved our paper. We are also grateful
to Graciela Chichilnisky, John Einmahl, Johan Eyckmans, Reyer Gerlagh, Christian Groth, David Hendry, John Knowles,
Sjak Smulders, Peter Wakker, Aart de Zeeuw, and Amos Zemel for feedback. This research was funded in part by the
Netherlands Organization for Scientific Research (NWO) under grant Vidi-2009 (Laeven) and by the Social Sciences and
Humanities Research Council’s Insight Development Grant 430-2015-00073 (Muris).

References

Ackerman, F., Stanton, E.A., Bueno, R., 2010. Fat tails, exponents, extreme uncertainty: simulating catastrophe in dice. Ecol. Econom. 69, 1657–1665.
Barro, R.J., 2009. Rare disasters, asset prices, and welfare costs. Amer. Econ. Rev. 99, 243–264.
Berger, L., Emmerling, J., Tavoni, M., 2017. Managing catastrophic climate risks under model uncertainty aversion. Manage. Sci. 63, 749–765.
Bernoulli, D., 1738. Specimen theoriae novae de mensura sortis. In: Commentarii Academiae Scientiarum Imperialis Petropolitanae, vol. 5. pp. 175–192.
Bertsekas, D.P., 2005. Dynamic Programming and Optimal Control, third edition Athena Scientific, Belmont, MA.
Brandt, M.W., Goyal, A., Santa-Clara, P., Stroud, J.R., 2005. A simulation approach to dynamic portfolio choice with an application to learning about

return predictability. Rev. Financ. Stud. 18, 831–873.
Brumm, J., Scheidegger, S., 2017. Using adaptive sparse grids to solve high-dimensional dynamic models. Econometrica 85, 1575–1612.
Buchholz, W., Schymura, M., 2012. Expected utility theory and the tyranny of catastrophic risks. Ecol. Econom. 77, 234–239.
Cai, Y., Judd, K.L., Lontzek, T.S., 2012. DSICE: A dynamic stochastic integrated model of climate and economy. RDCEP Working Paper No. 12-02.

Available at SSRN: https://ssrn.com/abstract=1992674.
Cai, Y., Lenton, T.M., Lontzek, T.S., 2016. Risk of multiple interacting tipping points should encourage rapid co2 emission reduction. Nature Clim.

Change 6, 520–525.
Carriere, J.F., 1996. Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance Math. Econom. 19,

19–30.
Cerreia-Vioglio, S., Dillenberger, D., Ortoleva, P., 2015. Cautious expected utility and the certainty effect. Econometrica 83, 693–728.
Clément, E., Lamberton, D., Protter, P., 2002. An analysis of a least squares regression method for american option pricing. Finance Stoch. 6, 449–471.
Dietz, S., 2011. High impact, low probability? an empirical analysis of risk in the economics of climate change. Clim. Change 108, 519–541.
Egloff, D., 2005. Monte carlo algorithms for optimal stopping and statistical learning. Ann. Appl. Probab. 15, 1396–1432.
Egloff, D., Kohler, M., Todorovic, N., 2007. A dynamic look-ahead monte carlo algorithm for pricing bermudan options. Ann. Appl. Probab. 17,

1138–1171.
Geweke, J., 2001. A note on some limitations of crra utility. Econom. Lett. 71, 341–345.
Gillingham, K., Nordhaus, W.D., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon, H., Reilly, J., Sztorc, P., 2015. Modeling uncertainty in

climate change: A multi-model comparison. NBER Working Paper No. 21637.
Gordon, R.B., Koopmans, T., Nordhaus, W., Skinner, B., 1987. Toward a New Iron Age? Quantitative Modeling of Resource Exhaustion. Harvard

University Press, Cambridge, Mass.
Howard, P.H., Sterner, T., 2017. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225.
Hwang, I.C., Reynès, F., Tol, R.S.J., 2013. Climate policy under fat-tailed risk: an application of dice. Environ. Resour. Econ. 56, 415–436.
Ikefuji, M., Laeven, R.J.A., Magnus, J.R., Muris, C., 2013. Pareto utility. Theory and Decision 75, 43–57.
Ikefuji, M., Laeven, R.J.A., Magnus, J.R., Muris, C., 2015. Expected utility and catastrophic consumption risk. Insurance Math. Econom. 64, 306–312.
Jensen, S., Traeger, C.P., 2014a. Optimal climate change mitigation under long-term growth uncertainty: stochastic integrated assessment and analytic

findings. Eur. Econ. Rev. 69, 104–125.
Jensen, S., Traeger, C.P., 2014b. Optimally climate sensitive policy under uncertainty and learning. Working paper, presented at the Conference on

Sustainable Resource Use and Economic Dynamics (SURED), Ascona, Switzerland.
Keller, K., Bolker, B.M., Bradford, D.F., 2004. Uncertain climate thresholds and optimal economic growth. J. Environ. Econ. Manage. 48, 723–741.
Kelly, D.L., Kolstad, C.D., 1999. Bayesian learning, growth, and pollution. J. Econ. Dyn. Control 23, 491–518.
Kimball, M., 1990. Precautionary saving in the small and in the large. Econometrica 58, 53–73.
King, R.G., Rebelo, S.T., 1999. Resuscitating real business cycles. In: Taylor, J.B., Woodford, M. (Eds.), Handbook of Macroeconomics, vol. 1. Elsevier,

Chapter 14.
Krätschmer, V., Ladkau, M., Laeven, R.J.A., Schoenmakers, J.G.M., Stadje, M., 2018. Optimal stopping under uncertainty in drift and jump intensity.

Math. Oper. Res. 43, 1177–1209.
Laeven, R.J.A., Stadje, M., 2014. Robust portfolio choice and indifference valuation. Math. Oper. Res. 39, 1109–1141.
Leach, A.J., 2007. The climate change learning curve. J. Econ. Dyn. Control 31, 1728–1752.
Lemoine, D., Traeger, C.P., 2014. Watch your step: optimal policy in a tipping climate. Am. Econ. J. 6, 137–166.
Longstaff, F.A., Schwartz, E.S., 2001. Valuing american options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147.

http://refhub.elsevier.com/S0304-4076(19)30110-1/sb1
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb2
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb3
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb4
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb5
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb6
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb6
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb6
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb7
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb8
https://ssrn.com/abstract=1992674
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb10
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb10
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb10
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb11
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb11
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb11
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb12
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb13
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb14
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb15
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb16
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb16
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb16
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb17
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb19
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb19
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb19
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb20
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb21
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb22
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb23
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb24
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb24
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb24
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb26
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb27
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb28
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb29
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb29
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb29
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb30
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb30
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb30
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb31
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb32
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb33
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb34


M. Ikefuji, R.J.A. Laeven, J.R. Magnus et al. / Journal of Econometrics 214 (2020) 110–129 129

Lontzek, T.S., Cai, Y., Judd, K.L., Lenton, T.M., 2015. Stochastic integrated assessment of climate tipping points indicates the need for strict climate
policy. Nature Clim. Change 5, 441–444.

Mahadevan, L., Deutch, J.M., 2010. Influence of feedback on the stochastic evolution of simple climate systems. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 466, 993–1003.

Manne, A.S., Richels, R.G., 1992. Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits. MIT Press, Cambridge, MA.
Mastrandrea, M.D., Schneider, S.H., 2004. Probabilistic integrated assessment of ‘dangerous’ climate change. Science 304, 571–575.
Menger, K., 1934. Das unsicherheitsmoment in der wertlehre: betrachtungen im anschlußan das sogenannte petersburger spiel. Z. National. (J. Econ.)

5, 459–485.
Nordhaus, W.D., 1994. Managing the Global Commons: The Economics of Climate Change. MIT Press, Cambridge, MA.
Nordhaus, W.D., 2008. A Question of Balance: Weighing the Options on Global Warming Policies. Yale University Press, New Haven, CT.
Nordhaus, W.D., 2013. The Climate Casino: Risk, Uncertainty, and Economics for a Warming World. Yale University Press, New Haven, CT.
Nordhaus, W.D., 2017a. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. 114, 1518–1523.
Nordhaus, W.D., 2017b. Projections and uncertainties about climate change in an era of minimal climate policies. No. 22933, National Bureau of

Economic Research.
Nordhaus, W.D., Yang, Z., 1996. A regional dynamic general-equilibrium model of alternative climate-change strategies. Amer. Econ. Rev. 86, 741–765.
Pindyck, R.S., 2011. Fat tails, thin tails, and climate change policy. Rev. Environ. Econ. Policy 5, 258–274.
Powell, W.B., 2011. Approximate Dynamic Programming: Solving the Curses of Dimensionality, second edition John Wiley & Sons, Hoboken, NJ.
Roe, G.H., Baker, M.B., 2007. Why is climate sensitivity so unpredictable?. Science 318, 629–632.
Roughgarden, T., Schneider, S.H., 1999. Climate change policy: quantifying uncertainties for damages and optimal carbon taxes. Energy Policy 27,

415–429.
Schmitt-Grohé, S., Uribe, M., 2004. Optimal fiscal and monetary policy under sticky prices. J. Econom. Theory 114, 198–230.
Traeger, C.P., 2014. A 4-stated dice: quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59, 1–37.
Tsitsiklis, J., Van Roy, B., 1999. Regression methods for pricing complex american style options. IEEE Trans. Neural Netw. 12, 694–703.
Ursúa, J.F., 2010. Long-run volatility. In: Mimeo. Harvard University.
Weitzman, M.L., 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19.

http://refhub.elsevier.com/S0304-4076(19)30110-1/sb35
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb35
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb35
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb36
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb36
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb36
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb37
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb38
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb39
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb39
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb39
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb40
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb41
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb42
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb43
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb45
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb46
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb47
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb48
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb49
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb49
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb49
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb50
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb51
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb52
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb53
http://refhub.elsevier.com/S0304-4076(19)30110-1/sb54

	Expected utility and catastrophic risk in a stochastic economy–climate model
	Introduction
	Nordhaus' DICE model
	Introducing stochasticity
	Optimization problem and solution algorithm
	SDICE* as a stochastic dynamic finite-horizon optimization problem
	Solution algorithm: generic description
	Some practical aspects of the algorithm
	Comparison to standard algorithms

	Compatibility of preferences and stochasticity
	Main findings
	Setting and base parameters
	DICE versus DICE*
	Light tails in the center
	Light tails at the edges
	Heavy tails

	Extensions
	Uncertainty in the damage parameter
	Emissions-to-output uncertainty
	Uncertainty in technological efficiency

	Conclusions
	Acknowledgments
	References


