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1 Introduction

The current economy-climate debate raises many difficult issues. Only one of
these is discussed in the current paper, namely the question if and how abate-
ment, consumption, and investment policies are affected by catastrophic risk.
Economy-climate policies are typically analyzed using Integrated Assessment
Models (IAMs) that describe the complex interplay between climate and the
economy. Our paper augments a widely-used deterministic IAM by incorpo-
rating (potentially heavy-tailed) risk related to future climate change and its
associated economic damage, and analyzes its impact on the policy variables.

Our model is based on Nordhaus’ (2017a, 2017b) dynamic integrated
model of climate and the economy (DICE), which has become an important
benchmark IAM, not only in the theoretical literature but also serving as a
tool for economy-climate policy analysis by the US government. The DICE
model is our starting point and the deterministic version of our model re-
duces to DICE. To represent uncertainty and motivated by the developments
in Manne and Richels (1992), Nordhaus (1994), Roughgarden and Schneider
(1999), Kelly and Kolstad (1999), Keller et al. (2004), Mastrandrea and
Schneider (2004), Leach (2007), Weitzman (2009), and in particular Acker-
man et al. (2010), we introduce to DICE random shocks featuring potentially
heavy-tailed risk. We refer to the resulting stochastic model as SDICE*. We
initially focus on uncertainty through the damage-abatement fraction and,
later, in an extension of this base stochastic model, we shall also account
for uncertainty in the damage parameter, an uncertain emissions-to-output
ratio, and uncertainty in technological efficiency.

To solve the stochastic dynamic economy-climate model thus obtained, we
embed the associated optimization problem into a general class of stochastic
dynamic finite-horizon optimization problems. We next develop a regression-
based method for solving such problems. Our solution method is flexible
in the sense that it allows for a wide class of utility functions and that it
imposes only weak assumptions on the stochasticity, permitting both light-
and heavy-tailed risks and stochastic parameters.

In the context of SDICE* we show formally that heavy-tailed risk is
only compatible with some utility functions, and in particular that it is
not compatible with power utility. To do so, we invoke the general decision-
theoretic results of Ikefuji et al. (2015) and apply these to the current setting.
We propose to use the Pareto utility function to represent preferences in
the presence of heavy-tailed risk. This utility function was introduced by
Ikefuji et al. (2013) and advocated by Cerreia-Vioglio et al. (2015). Pareto
utility avoids the drawbacks ‘near the edges’ that standard families of utility
functions such as power and exponential utility exhibit, and is particularly
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suited for heavy-tailed risk analysis.
Our four main findings are as follows. First, the introduction of light-

tailed uncertainty through the damage-abatement fraction of SDICE* leads
to a reduction of abatement, while optimal consumption and investment are
relatively less affected. Conditional upon the shocks realizing their expected
value, namely zero, the pattern remains the same in later periods, and this
applies to both power and Pareto utility. Although lower abatement has a
negative propagation effect in our economy-climate model, the social planner
sacrifices some abatement to maintain consumption and investment, under
uncertainty about the damage-abatement fraction. Compared to a Pareto
utility maximizer, the power utility maximizer has a stronger motive to avoid
a low damage-abatement reduced output, and therefore consumes less in early
periods and invests and abates more in all periods. The changes remain small
as long as the shocks take values close to their expectation, that is, in the
‘center’ of the distribution.

Second, when the light-tailed shocks take larger negative values, the op-
timal policies are more affected: pronounced differences occur in the optimal
policy and state variables at the ‘edges’, both within and between models.
In particular, a power utility maximizer has a stronger motive to abate as
a precaution (Kimball, 1990) than a Pareto utility maximizer, and this am-
plifies with adverse realizations of the shocks. This effect is the result of
a trade-off between maintaining current consumption and taking intensified
precautionary action under adverse circumstances. We find that the power
utility maximizer tends to favor a relatively larger substitution from current
consumption to intensified precautionary action when compared to Pareto
utility. This effect is distinct from the higher levels of abatement observed
for a power utility maximizer in the center of the distribution (and under the
deterministic model) which it further amplifies.

Third, allowing for heavy-tailed uncertainty making catastrophic risk sce-
narios more pronounced, our first main finding broadly remains valid under
Pareto utility, while our second main finding gets reinforced, with power util-
ity becoming incompatible in this case. Indeed, for a power utility maximizer,
the expectation of the intertemporal marginal rate of substitution becomes
infinite when considering heavy-tailed uncertainty in the SDICE* model.

Fourth, in the center of the distribution the impact of uncertainty in the
damage-abatement fraction dominates the impact of uncertainty in the dam-
age parameter and an uncertain emissions-to-output ratio and closely resem-
bles the impact of uncertainty through technological efficiency. At the edges,
an uncertain damage parameter impacts consumption, but leaves abatement
nearly unaffected, while uncertainty in the emissions-to-output ratio signif-
icantly impacts abatement but has relatively little effect on consumption.
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Furthermore, when adverse scenarios for technological efficiency realize, op-
timal abatement is suppressed compared to the adverse scenarios in which
the damage-abatement fraction is relatively small.

Although there are many papers on climate policy under uncertainty, the
literature on the interplay between climate and the economy under uncer-
tainty is much smaller. The existing IAMs which explicitly include uncer-
tainty can be divided in three classes: (i) stochastic dynamic IAMs with
learning, but no consideration of catastrophe; (ii) deterministic IAMs con-
sidering catastrophe; and (iii) stochastic dynamic IAMs considering tipping
points.

In class (i), Kelly and Kolstad (1999) explore Bayesian learning about
the relationship between greenhouse gas levels and global mean tempera-
ture changes, analyze when uncertainty is resolved, and show that the ex-
pected learning time depends on the variance of the temperature realisations
and varies directly with the emission policy. Extensions of Kelly and Kol-
stad (1999) are provided in Keller et al. (2004), Leach (2007), and Traeger
(2014). Jensen and Traeger (2014b) study the effects of climate sensitivity
uncertainty, learning, and temperature stochasticity separately, and find pre-
cautionary savings in the presence of the stochasticity of temperature, while
Bayesian learning about climate sensitivity raises the abatement rate and
hence the optimal carbon tax.

In class (ii), Mastrandrea and Schneider (2004), Ackerman et al. (2010),
Dietz (2011), Hwang et al. (2013), and Gillingham et al. (2015) study the
implication of catastrophic risks in IAMs. These papers focus on examining
the shape of the damage function and the climate sensitivity parameter. We
mention in particular the relevant contribution by Ackerman et al. (2010),
who analyze the impact of parameter uncertainty in the specification of the
damage function and/or in the temperature equation on the optimal poli-
cies. Their approach consists in first simulating the parameter(s) of interest
by drawing from a pre-specified probability distribution, and then determin-
istically solving DICE for each realization of the parameter(s), thus obtaining
a ‘distribution’ of the optimal policies. This approach provides an assessment
of the sensitivity and robustness of the optimal policies to parameter assump-
tions within the context of a deterministic economy-climate model. Also,
Gillingham et al. (2015) conduct an extensive Monte Carlo analysis for six
IAMs, to analyze how model output responds to model misspecification due
to parameter uncertainty, by estimating surface-response functions. The cur-
rent paper, in contrast, solves a stochastic optimization problem. Our social
planner takes potentially heavy-tailed stochasticity in the damage-abatement
fraction (and the damage parameter, the emissions-to-output ratio and tech-
nological efficiency, in extensions of the model) already into account when
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solving for the optimal policies.
In class (iii), Lemoine and Traeger (2014), Lontzek et al. (2015), Cai et

al. (2012, 2016), and Berger et al. (2017) explore how the risk of stochas-
tically uncertain environmental tipping points affects climate policy, using
a stochastic IAM based on the DICE model. Berger et al. (2017) adopt
non-expected utility preferences to accommodate aversion to both risk and
ambiguity when analyzing tipping elements in climate change, employing
a two-period model in which uncertainty resolves in 2100. The paper by
Cai et al. (2012) is particularly relevant for us. They extend conventional
economy-climate analysis based on deterministic IAMs to allow for a range
of stochastic features. In particular, they conduct an extensive analysis of
carbon emission policies in a stochastic environment. A key distinction be-
tween their work and ours is that they only allow shocks with a bounded
probability distribution, thus ruling out the normal or the Student distribu-
tion, in order to avoid catastrophic risk scenarios (‘tail events’). In contrast,
risks with unbounded support and potentially featuring heavy tails, as well
as the catastrophic risk scenarios they may induce, are at the heart of our
analysis.

Our paper also relates to the literature on numerical methods for dy-
namic programming and stochastic optimal control. The algorithm that we
develop for solving SDICE* is inspired by the Least Squares Monte Carlo
(LSMC) approach introduced by Longstaff and Schwartz (2001); see also
Carriere (1996), Clément et al. (2002), and Powell (2011) for further details,
including convergence results. LSMC has been successfully applied to a va-
riety of problems in financial economics and operations research; see e.g.,
Brandt et al. (2005), who use LSMC to solve a portfolio choice problem
with non-standard preferences, Laeven and Stadje (2014), who solve prob-
lems of optimal portfolio choice and indifference valuation under general asset
price dynamics and in the presence of model uncertainty using LSMC, and
Krätschmer et al. (2017), who employ LSMC to analyze model uncertainty
in optimal stopping.

The paper is organized as follows. In Section 2 we succinctly summarize
DICE. In Section 3 we introduce uncertainty into DICE. In Section 4 we
provide a formal description of a general class of stochastic dynamic finite-
horizon economy-climate models, allowing for heavy-tailed uncertainty and
general utility functions and embedding SDICE* as a special case, and de-
velop a regression-based method for solving such models. In Section 5 we
show, in the context of our model, that heavy-tailed uncertainty is not com-
patible with all utility functions, in particular power utility, and propose an
alternative utility function: Pareto utility. In Section 6 we present the results
of our SDICE* model and discuss their implications, while some extensions
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are presented in Section 7. Section 8 concludes.

2 Nordhaus’ DICE model

Our analysis takes as its starting point the DICE model, more precisely the
‘beta version’ of DICE-2016R, a version with identification DICE-2016R-
091916ap.gms; see Nordhaus (2017a, 2017b). (Earlier versions are in Nord-
haus and Yang (1996) and Nordhaus (2008, 2013).) We briefly summarize
this model in condensed form.

Everybody works. In period t, the labor force Lt together with the capital
stock Kt generate GDP Yt through a Cobb-Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1), (1)

where At represents technological efficiency and γ is the elasticity of capital.
Capital is accumulated through

Kt+1 = (1− δ)Kt + It (0 < δ < 1), (2)

where It denotes investment and δ is the depreciation rate of capital.
Carbon dioxide (CO2) emissions consist of industrial emissions (caused

by production) and non-industrial emissions. We denote the latter type by
E0
t and consider it to be exogenous to the model. Total CO2 emissions Et

are then given by
Et = σt(1− µt)Yt + E0

t , (3)

where σt is the emissions-to-output ratio for CO2 and µt is the abatement
fraction for CO2. The associated CO2 concentration increase Mt in the at-
mosphere (GtC from 1750) accumulates through

Mt+1 = (1− b0)Mt + b1M
(s)
t + Et, (4a)

M
(s)
t+1 = b0Mt + (1− b1 − b3)M (s)

t + b2M
(l)
t , (4b)

M
(l)
t+1 = b3M

(s)
t + (1− b2)M (l)

t , (4c)

where M
(s)
t and M

(l)
t are auxiliary variables representing CO2 concentration

increases in shallow and lower oceans, respectively.
Temperature increase Ht (degrees Celsius from 1900) is given by

Ht+1 = (1− a0)Ht + a1 log(Mt+1) + a2H
(l)
t + Ft+1, (5a)

H
(l)
t+1 = (1− a3)H(l)

t + a3Ht, (5b)
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where H
(l)
t is an auxiliary variable representing temperature increase of the

lower oceans and Ft+1 is exogenous.
In each period t, the fraction of GDP not spent on abatement or ‘damage’

is either consumed (Ct) or invested (It) along the budget constraint(
1− ωt − ξH2

t

)
Yt = Ct + It. (6)

A fraction ωt of Yt is spent on abatement, and we specify the abatement cost
fraction as

ωt = ψtµ
θ
t (θ > 1). (7)

When µt increases then so does ωt, and a larger fraction of GDP will be spent
on abatement. Damage is represented by a fraction ξH2

t of Yt, and it depends
only on temperature. The optimal temperature is Ht = 0, the temperature
in 1900. Deviations from the optimal temperature cause damage.

Equations (1)–(7) imply a condensed system consisting of six dynamic
equations (in the state variables K, M , H, M (s), M (l), and H(l)) in terms of
the three policy variables I, µ, and (through the budget constraint) C.

As in DICE-2016R one period is five years. Period 1 refers to the time
interval 2015–2019, period 2 to 2020–2024, and so on. Stock variables are
measured at the beginning of the period. We choose the exogenous variables
such that Lt > 0, At > 0, E0

t > 0, σt > 0, and 0 < ψt < 1. The policy
variables must satisfy

Ct ≥ 0, It ≥ 0, µt ≥ 0. (8)

Nordhaus restricts µt ≤ 1 in the early periods, but he allows an upper bound
of 1.2 from period 30 onwards (year 2160). We do the same.

Given a utility function U we define welfare in period t as

Wt = LtU(Ct/Lt). (9)

The policy maker has a finite horizon and maximizes total discounted welfare

W =
T∑
t=1

Wt

(1 + ρ)t
(0 < ρ < 1), (10)

where ρ is the discount rate and T = 100 (500 years). Letting x denote per
capita consumption, the utility function U(x) is assumed to be defined and
strictly concave for all x > 0. There are many such functions, but a popular
choice is

U(x) =
x1−α − 1

1− α
(α > 0), (11)

where α is the elasticity of marginal utility of consumption. This is the
so-called power function. Many authors, including Nordhaus, select this
function. All parameter- and initial values are the same as in DICE-2016R.
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3 Introducing stochasticity

We now introduce uncertainty in the DICE model, focussing on the uncer-
tainty about the economic impact of future climate change. Uncertainties
can arise in many ways. Gillingham et al. (2015) distinguish between seven
types of uncertainties including most notably parametric uncertainty, such as
uncertainty about the climate sensitivity parameter; model or specification
uncertainty, such as the specification of the aggregate production function
or the damage function; measurement error, for example related to the level
and trend of global temperature; and random errors in structural equations,
for example due to weather shocks.

We shall study the impact of stochasticity in four scenarios, defined by
adding four random shocks uj,t (j = 1, . . . , 4) to the condensed system (1)–
(7), as follows:

(i) Uncertainty through the damage-abatement fraction dt = 1−ωt− ξH2
t

in (6) by modifying dt to d̄t = dtu1,t;

(ii) Uncertainty in the damage parameter by modifying ξ in (6) to ξ̄t = ξu2,t;

(iii) Uncertainty in the emissions-to-output ratio by modifying σt in (3) to
σ̄t = σtu3,t; and

(iv) Uncertainty through technological efficiency by modifying At in (1) to
Āt = Atu4,t.

We specify the shocks uj,t as

uj,t = e−τ
2
j /2eτjεj,t (j = 1, 2, 3, 4), (12)

where the normalizing constants e−τ
2
j /2 are chosen such that E(uj,t) = 1 when

εj,t ∼ N(0, 1). We never change the parameters of a given probability distri-
bution of εj,t, we only vary the level of τj. Also, note that under scenario (ii),
when the temperature change is zero, there is no uncertainty.

The general model formulation resulting from these four scenarios en-
compasses a rich spectrum of uncertainties: we can use it to examine how
damage and mitigation uncertainty interacts with climate change policies,
but also how uncertainty in productivity or in the emissions-to-output ratio
interacts with such policies. Thus we obtain a stylized stochastic IAM of
climate economics, to which we refer as SDICE* (= stochastic DICE).

Uncertainty in the damage parameter ξ (scenario (ii)) has been consid-
ered by Keller et al. (2004), Ackerman et al. (2010), Dietz (2011), Hwang et
al. (2013), Berger et al. (2017), and Howard and Sterner (2017). The impact
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of uncertain technological efficiency (scenario (iv)) is studied by Cai et al.
(2012) and Jensen and Traeger (2014a), and its importance is emphasized by
Gillingham et al. (2015). Uncertainty in the emissions-to-output ratio (sce-
nario (iii)) has not received much attention. Uncertainty in the abatement
cost has been studied in Hwang et al. (2013). We first focus on the combined
uncertainty of damage and abatement, as specified in scenario (i), but later
we shall discuss all scenarios.

We shall consider both light- and heavy-tailed risk. If the εj,t are indepen-
dent and identically distributed (iid) and follow a normal distribution N(0, 1),

then the moments of uj,t exist, and we have E(uj,t) = 1 and var(uj,t) = eτ
2
j −1.

Since the distribution of uj,t is heavily skewed, more uncertainty (higher τj)
implies more probability mass of uj,t close to zero. If, however, we move only
one step away from the normal distribution and assume, e.g., that εj,t follows
a Student distribution with any (finite) degrees of freedom, then the expec-
tation is infinite (Geweke, 2001). The analysis in, among others, Weitzman
(2009), Dietz (2011), Pindyck (2011), Buchholz and Schymura (2012), and
Hwang et al. (2013) suggests that heavy-tailed risk plays an important role
in the economics of climate change.

If τj > 0 then the assumption of iid distributed errors εj,t is sufficient
to generate the possibility of incompatibility between preferences and distri-
butional assumptions, as discussed and proved in Section 5. Provided the
compatibility conditions are satisfied, the algorithm we propose in Section 4
can also handle more sophisticated error assumptions.

4 Optimization problem and solution algo-

rithm

In this section we discuss a class of stochastic dynamic finite-horizon opti-
mization problems to which the SDICE* model in Section 3 belongs as a
special case, and develop a regression-based method to solve such problems.
We first introduce some notation, define our general class of optimization
problems, and show how it encompasses SDICE* as a special case. Then we
design a regression-based algorithm to numerically solve optimization prob-
lems in this class. The optimization problem that we consider is a challenging
one, because of the nonlinearities induced by the economy-climate model, the
desired generality of preferences and beliefs, and the aim to accurately cap-
ture tail-risk behavior far away from a rapidly evolving steady state. We
shall indicate how our solution algorithm deals with each of these challenges.
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4.1 SDICE* as a stochastic dynamic finite-horizon op-
timization problem

The social planner in SDICE* faces a discrete-time stochastic dynamic finite-
horizon programming problem, which consists of maximizing expected total
discounted welfare W given in (10) subject to the SDICE* model specified
in the condensed system of equations (1)–(7) and including one (or several)
of the four shocks specified in Section 3.

To facilitate the discussion of our optimization problem, we express it
using the nomenclature of dynamic optimization; see, e.g., Bertsekas (2005)
or Powell (2011). We start by considering a discrete-time setup with control
variables, state variables, and stochastic drivers, adapted to an underlying
filtered probability space. The time-t state variables are stacked into a vec-
tor xt, the time-t control variables into a vector zt and the time-t stochastic
drivers into a vector εt. In SDICE*, the prime state variables are the capital
stock Kt, temperature Ht, and carbon dioxide concentrations Mt, and the
auxiliary variables (M

(s)
t ,M

(l)
t , H

(l)
t ). The prime control variables are con-

sumption Ct and the abatement fraction µt. Stochasticity enters SDICE*
through εt = (ε1,t, ε2,t, ε3,t, ε4,t), where j = 1, . . . , 4 refers to the scenario
through which we introduce the stochasticity.

For given values of (xt, zt, εt), and given the exogenous variables and pa-
rameters at time t, all other endogenous variables in the model are supposed
to be known at time t. In SDICE*, the exogenous variables and parameters
are: the initial values of the state variables, (K1, H1,M1,M

(s)
1 ,M

(l)
1 , H

(l)
1 ), the

time-varying exogenous stock variables and parameters (At, Lt, ψt, σt, E
0
t , Ft),

the time-invariant parameters (γ, δ, ρ, φ, ξ, θ, a0, a1, a2, a3, b0, b1, b2, b3), and
the stochasticity parameters (τ1, τ2, τ3, τ4). The remaining endogenous vari-
ables in the model — investment It, emissions Et, the abatement cost fraction
ωt, welfare Wt, and output Yt — are determined by the prime control and
state variables, the exogenous variables, and the parameters. For example,
the control variable investment, It, is obtained from the budget constraint (6)
and the state variable GDP, Yt, follows from the identity (1). Similarly, ex-
plicit expressions depending on the prime state and control variables and
stochastic drivers are obtained for all other state and control variables that
are not contained in xt or zt under SDICE*. Given the controls, the discrete-
time process of state variables is assumed to be a controlled Markov process.
The Markov property is essential in our development. For ease of exposition
we assume in the present section that the {εt} are independent over time, but
this assumption can be relaxed. (Removing the requirement that the {εt} are
independent over time means that the value function and its approximation
at time t introduced below will explicitly depend on the stochasticity vector
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εt−1.)
In general, the system of prime state variables evolves dynamically ac-

cording to a sequence of vector functions ft taking values on the support
of xt:

xt+1 = ft(xt, zt, εt).

By allowing ft to be a time-varying function, we accommodate arbitrary time
paths for exogenous variables and parameters.

The decision maker seeks to implement the optimal policy, while satisfying
the constraints imposed by the model. The constraints on the time-t control
variables zt are represented by a time-varying set Zt(xt, εt) that depends
in particular on the current value of the state vector xt and the stochastic
driver εt. Maximization is then over

zt ∈ Zt(xt, εt). (13)

For the first twenty periods of the SDICE* model with uncertainty as in
scenario (i), this set of constraints specializes to:

0 ≤ Ct ≤
(
1− ωt − ξH2

t

)
AtK

γ
t L

1−γ
t e−τ

2
1 /2 eτ1ε1,t

and
0 ≤ µt ≤ 1;

see also (17). For scenarios (ii) and (iii), the first constraint will incorpo-
rate uncertainty in a different manner. For later time periods, the second
constraint is modified to 0 ≤ µt ≤ 1.2.

The decision maker’s objective is to maximize his/her evaluation of a
stream of payoffs (or rewards) by optimally selecting the control variables.
Denote by Vs (1 ≤ s ≤ T ) the maximum of the evaluation of the payoff
stream collected in periods s through T , given all the information available
at time s− 1 and subject to the constraints in (13):

Vs(xs) = max
zs,...,zT

Es−1

[
T∑
t=s

gt(zt)

]
(14)

subject to {
zt ∈ Zt(xt, εt) (s ≤ t ≤ T ),
xt+1 = ft(xt, zt, εt) (s ≤ t ≤ T − 1),

where gt is the decision maker’s time-t specific objective function and Es
is short-hand notation for the conditional expectation with respect to the
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filtration at time s. We note that, given the information at time s − 1, the
vector function fs−1 dictates the prime state variables at time s (but not the
control variables). Therefore, optimization for period s can be based upon
the conditional expectation at time s − 1. The function Vs is referred to as
the value function. The corresponding Bellman equation is given by

Vt(xt) = max
zt∈Zt(xt,εt)

Et−1 [gt(zt) + βVt+1(ft(xt, zt, εt))] , (15)

where β is a discount factor (0 < β < 1). The time-t objective function gt(zt)
in the SDICE* model is given by

gt(zt) =
Lt U(Ct/Lt)

(1 + ρ)t
,

where U is the utility function. The discount factor in SDICE* is equal to
β = 1/(1 + ρ).

If the value function in period t + 1 is known, then Equation (15) is a
static optimization problem in the time-t control variables zt. The connection
between the value function at time t and the value function at time t+ 1, as
stipulated by the Bellman equation, allows the decision maker to maximize
his/her evaluation recursively by backward induction. Indeed, because all
variables including the realizations of stochasticity are observed in each pe-
riod, the decision maker first determines the optimal control variables in the
final period, depending on the other variables and parameters in the model
at that time. Then the decision maker maximizes the sum of that part of
the evaluation that pertains to time T − 1 and the discounted future value
function, thus proceeding backwards in time.

4.2 Solution algorithm: generic description

We will solve the Bellman equation numerically. Our approach to the com-
putation of the optimal policies is inspired by the Least Squares Monte Carlo
(LSMC) approach introduced by Longstaff and Schwartz (2001) in the con-
text of optimal stopping for American-style derivatives and adapted here to
our discrete-time dynamic stochastic finite-horizon optimization problem; see
also Carriere (1996) and Tsitsiklis and Van Roy (1999).

While it may seem natural to consider all potential future paths of the
variables in our model when conducting optimization, this readily becomes
ineffective in multiple dimensions and over longer time spans, which is the
situation we face in our application. We therefore propose a method based
on Monte Carlo where we simulate a set of future paths of the state variables
and stochastic drivers, and then invoke regression to obtain estimates of the
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value function in a recursive fashion. By relying on forward-simulated paths,
our method is relatively efficient. Moreover, because of the use of regres-
sion methods, the method does not require nested simulation, and hence is
computationally fast. A potentially even more efficient approach may be to
select fewer but better nodes for approximation and thus economize on the
number of generated paths, as in Cai et al. (2012) and Traeger (2014). We
don’t pursue this. Methods to handle high-dimensional problems, for ex-
ample with adaptive sparse grids, are discussed in Brumm and Scheidegger
(2017), but the dimensionality of our setting is only six so we don’t pursue
this either. Moreover, a variety of numerical approaches for infinite-horizon
problems with stationary variables are available, in particular in the DSGE
literature. Examples of such approaches and problems are King and Re-
belo (1999) in the context of technology shocks and real business cycles, and
Schmitt-Grohé and Uribe (2004) for a stochastic production economy with
sticky product prices. Our setting, however, differs from these approaches
and problems as it is characterized by the following three features: (i) our
problem is a finite-horizon problem with general preferences and beliefs; (ii)
our problem is highly non-stationary; (iii) we are interested in a solution at
(a) specific time period(s), not necessarily in the steady state, and not only
in the center of the distribution, but also at the edges.

We start in the final period T where the value function is given by

VT (xT ) = max
zT∈ZT (xT ,εT )

ET−1[gT (zT )]. (16)

Indeed, for our finite-horizon model, the payoff in periods after time T is equal
to zero. This implies that VT+1(xT+1) = 0, so that the Bellman equation
in (15) simplifies to the Bellman equation in (16) at time T .

At time T (and similarly for earlier time periods), our algorithm then
consists of four steps, as follows.

(a) First we use a random number generator to draw R values (xrT , ε
r
T ) for

r = 1, . . . , R. For SDICE*, εrT is drawn from a probability distribution
pre-specified in the model, while the value of the state vector xrT is
drawn from a uniform distribution with a wide support. This support
is centered at the optimal value of the state vector in the determin-
istic version of the model (DICE). The two (multivariate) draws are
independent.

(b) Next, for each r, we compute the deterministic quantity vrT as the
maximum value of the period-T objective function given the rth draw
(xrT , ε

r
T ). This specific optimization problem is typically straightforward
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at time T . For example, in the SDICE* model, consumption is set equal
to the available budget in the final period, and abatement is set to zero.

(c) We then use regression to approximate the function VT (xT ). To obtain
the approximation, we assume that there exists a set of basis functions
φj(xT ) and coefficients βj,T (j = 0, 1, 2, . . . ) such that

VT (xT ) =
∞∑
j=0

βj,Tφj(xT ), and VT (xT ) ≈
J∑
j=0

βj,Tφj(xT ), J ∈ N>0,

can serve as an approximation, and, for each r, we decompose the
deterministic maximum vrT into the sum of this approximation and an
(r)-specific disturbance νr,T , that is,

vrT =
J∑
j=0

βj,Tφj(x
r
T ) + νr,T .

Note that setting φ0(xT ) = 1 corresponds to including a constant term
β0,T in the approximation.

(d) Finally, we obtain least-squares estimates of the coefficients in this
approximation, which we denote by β̂j,T (j = 0, . . . , J), and we define

V̂T (xT ) =
J∑
j=0

β̂j,Tφj(xT )

as our approximation to the value function at time T .

Now consider period T − 1. The corresponding Bellman equation is

VT−1(xT−1) =

max
zT−1∈ZT−1(xT−1,εT−1)

ET−2 [gT−1(zT−1) + βVT (fT−1(xT−1, zT−1, εT−1))] .

The algorithm then proceeds as above in four steps: (a) generate draws
(xrT−1, ε

r
T−1) for r = 1, . . . , R; (b) given the rth draw (xrT−1, ε

r
T−1), com-

pute the deterministic maximum vrT−1, using the approximation V̂T obtained

above; (c) obtain estimates β̂j,T−1 for the coefficients βj,T−1 in

vrT−1 =
J∑
j=0

βj,T−1φj(x
r
T−1) + νr,T−1,
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using least squares; and (d) define the approximation V̂T−1(xT−1) to the value
function at time T − 1 as

V̂T−1(xT−1) =
J∑
j=0

β̂j,T−1φj(xT−1).

Next, we approximate the value function in period T − 2, and so on. In
this way we define, recursively, the value function V̂t for all the time periods
t = 1, . . . , T in the model. We thus obtain a flexible least-squares Monte-
Carlo-based approach, which accommodates general preferences and beliefs,
is easy to implement, and is effective and efficient.

Partial convergence results for Least Squares Monte Carlo in the context
of optimal stopping and American option pricing are provided by Longstaff
and Schwartz (2001); see also Tsitsiklis and Van Roy (1999). These results
are significantly expanded by Clément et al. (2002); see also Egloff (2005) and
Egloff et al. (2007). Their formal results can be adapted to our discrete-time
optimal control setting, and this allows us to conclude that the regression-
based approximations to the optimal control variables resulting from our
approach converge to the optimal control variables as the number of simula-
tions and the number of basis functions (in this order) tend to infinity. The
proof is somewhat tedious but conceptually straightforward, and proceeds by
showing first that the regression estimates converge using standard asymp-
totic regression theory, and next (more tedious) that the error propagation
resulting from the backward induction procedure vanishes asymptotically.

4.3 Some practical aspects of the algorithm

The previous subsection provides a generic description of a numerically ef-
ficient algorithm, which computes the solution to a class of discrete-time
stochastic dynamic finite-horizon optimization problems. In our application
of this algorithm to the SDICE* model, our goal is to accurately capture the
nonlinear behavior of the model as well as its tail risk behavior potentially far
away from a rapidly evolving steady state. For this reason, the support from
which we generate values for the state variables must be sufficiently wide.
In addition, we need a flexible approximation to Vt over this wide support.
We now describe some further details specific to the implementation of our
algorithm.

The support. We need to specify the support from which we draw xrt . This
support must be wide enough to capture optimal policies away from the
steady state, because we are specifically interested in optimal policies in the
presence of large negative shocks, i.e., under catastrophic risk, and we want
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our approximation to the optimal policies to be accurate in such scenarios.
Let x∗t denote the state vector under the optimal solution to the deterministic
version of the model (DICE). We draw xrt from a uniform distribution with
support [0.5x∗t , 2.5x

∗
t ]. Taking the support even wider does not help our so-

lution: the optimization routine never evaluates values of the state variables
outside those intervals. The first period is of particular importance, as we
will investigate in detail the distribution of the optimal policies under large
negative shocks in that period. In period 1, capital is equal to K1 = 223.
The specified support for K2 is now given by [134.2, 671.2]. Even under very
large shocks in period 1, the lower bound of the support is never binding for
the optimal choice of K2.

Number of time periods and draws. We must also specify the number of time
periods for which we solve the model and the number of simulation draws R
to be drawn in every time period (each time period consists of five years). We
solve the model for T = 100 time periods. We ignore uncertainty in periods
21 through 100. We report results at the center for periods 1, 6, 11, 16, and at
the edges in periods 1 and 2. We experimentally determine that considering
stochasticity for more than 20 periods does not affect our reported results:
the reported results do not change if we increase the number of periods with
stochasticity to 30 or 40.

An elegant alternative way to formulate the economy-climate problem
would be to set it in an infinite-horizon framework, and to solve it on small
time-steps to approximate the continuous-time solution, as in Cai et al.
(2012) and Traeger (2014). However, because we wish to stay close to our
starting point given by the benchmark DICE model, we adopt the same
time-steps and finite-horizon formulation as in DICE.

The value of R used for the first 20 periods has been determined by trial
and error. We started with R = 1,000 simulations per period, and then
assessed whether the solution is sensitive to increases in R using steps of
1,000. After R = 5,000, the change in optimal consumption was less than
0.01. We then conservatively set R = 10,000. Such a large value for R
is feasible because our regression-based approach avoids nested simulation.
This is not only useful to capture tail risk behavior but also to accommodate
general preferences and beliefs. Similarly, for periods 21 through 100, we find
that results are not sensitive to increasing the number of draws beyond 200.
We conservatively set R = 1,000 for those periods.

Basis functions. The selection of the basis functions in the approximation
of the value function is an important ingredient of our procedure. We use
polynomials as basis functions. To select the order of the polynomials, and
to select which interactions terms to include in our model, we proceed in
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three steps. First, we use a model selection approach to choose the order of
the polynomial. Second, we use model selection to choose a set of interaction
terms. Both steps are performed using power utility. In a third step, we
repeat the first two steps under Pareto utility.

Let us now describe each of the three steps in more detail. We start by
solving the DICE model for all time periods under power utility using as basis
functions only a constant term and one linear function for each state variable.
For that solution, we measure the fit of the value function approximation in
each time period by computing the adjusted R-squared, Akaike’s Information
Criterion, and the leave-one-out cross-validation criterion. Next, we solve the
model using as basis functions a constant term, and a linear and quadratic
function in each state variable, and record the same criteria in each time
period. We repeat this for increasing sets of basis functions, up to polynomial
order 8.

The following conclusions hold for each of the three criteria: (i) inclusion

of the auxiliary state variables (M
(s)
t ,M

(l)
t , H

(l)
t ) does not reduce the criteria,

and occasionally leads to numerical instability; (ii) a fourth-order polynomial
in (Kt,Mt, Ht) outperforms lower-order polynomials in all time periods; (iii)
a fifth-order polynomial is competitive with the fourth-order polynomial in
later time periods (t > 15) but not in the early time periods. (iv) numeri-
cal instability is more serious for polynomials of order greater than 5, while
those specifications do not improve the criteria relative to the fourth-order
polynomial. This is visualized in Figure 1, where we plot Akaike’s Informa-
tion Criterion (AIC) for the sets of basis functions up to polynomial order 5,
against the time period. (Plots for the other criteria are similar.) Because
the criteria are computed over discrete time periods, the curves are somewhat
granular rather than smooth. On the basis of these findings, we proceed to
the next step of our model selection procedure using the fourth-order poly-
nomial in (Kt,Mt, Ht).

In the second step, we repeat this procedure by gradually adding interac-
tion terms to the fourth-order specification selected in step 1. We solve the
model using a fourth-order polynomial augmented by interaction terms with
a combined degree of 2, i.e., KtMt, KtHt, and MtHt. This leads to improved
criteria in all time periods. For example, the adjusted R-squared, averaged
across time periods, is improved from approximately 0.9995 to 0.9999. We
then solve the model again after adding further interaction terms with a
combined degree of 3, e.g., K2

tMt. This improves the criteria in almost all
time periods, although the performance gain is much smaller. Adding further
interaction terms leads to numerical instability in the early periods, without
improving the criteria in the later periods. We illustrate this in Figure 2,
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where we plot the AIC for the sets of interaction terms up to a combined
degree of 3, against the time period. (Plots for the other criteria are similar.)

As a third step, we apply the procedure outlined above to the model with
Pareto utility. For both steps, we reach the same conclusion as in the power
utility case. The adjusted R-squared exceeds 0.9999 in all time periods for
the selected sets of basis functions. In view of the fact that we simulate
the state variables in the regression and their realizations lie in a very large
interval with a substantial fraction far away from the center (see above sub
‘The support’), this suggests in particular that our approximation to the
value function is good also at the edges. As a result, we choose a fourth-
order polynomial with interaction terms up to a combined degree of three for
all of the numerical results in this paper.

Code and testing details.
The code is written in Julia and is available from the authors upon

request. It was tested with Julia version 0.6.2, on a desktop computer with
Core i5-6300U architecture running Windows 10.

5 Compatibility of preferences and stochas-

ticity

Considerable care is required when combining the expected utility paradigm
with distributional assumptions, a fact known since Bernoulli (1738) and
Menger (1934). The numerical methods developed in Section 4 are valid,
in principle, for general expected utility preferences, but this is only true if
these preferences are compatible with the assumed stochasticity. If not, then
expected utility or expected marginal utility can become infinite, a situation
which we wish to avoid. Hence, if only weak assumptions on the stochasticity
are imposed, then some compatibility conditions are required to ensure that
our model’s stochastic optimization problem is well posed. In fact, we shall
place no restrictions on the stochasticity and allow for arbitrarily heavy-
tailed risks. Not all families of utility functions are then compatible and this
raises the question: which families of utility functions are and which are not
compatible with arbitrarily heavy-tailed risks? To answer this question we
invoke the general decision-theoretic results of Ikefuji et al. (2015) and apply
these to SDICE*, using backward induction.

We know from Sections 2 and 3 that consumption is bounded by

0 ≤ Ct ≤ Ct + It =
(
1− ωt − ξH2

t

)
AtK

γ
t L

1−γ
t u1,t

≤ AtK
γ
t L

1−γ
t u1,t = AtK

γ
t L

1−γ
t e−τ

2
1 /2eτ1ε1,t , (17)
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since It ≥ 0, ωt ≥ 0, and ξ > 0. Note that u1,t > 0 (with probability one)
and that AtK

γ
t L

1−γ
t is positive for all t. The last statement follows because

the exogenous variables At and Lt are assumed to be positive for all t; the
parameter δ satisfies 0 < δ < 1; the initial condition K1 > 0 holds; and
Kt ≥ (1− δ)t−1K1 > 0 since It ≥ 0. Now, because At and Lt are exogenous,
andKt is deterministic given all information at time t−1, sinceKt depends on
Kt−1 and It−1, AtK

γ
t L

1−γ
t is deterministic given all information at time t−1.

Since the social planner in our setup has time-additive expected utility
preferences, the inequality (17) implies that inequality (2) in Ikefuji et al.
(2015) would be satisfied if Ct were the only choice variable. In fact, there
are three choice variables: It, µt, and Ct. It is obvious, however, that in the
final period zero abatement and zero investment are optimal: I∗T = µ∗T = 0.
Hence, in the final period there is only one choice variable, namely CT , and
hence the desired inequality is satisfied at time T .

We can now invoke Proposition 5.2 of Ikefuji et al. (2015), apply it to the
final two periods in our setup, and conclude that if the probability distribu-
tion of ε1,T is heavy-tailed to the left, then expected marginal utility (or the
expected intertemporal marginal rate of substitution) pertaining to time T
is infinite whenever the utility function belongs to the power family. Thus,
if we move only slightly away from normality and allow ε1,T to follow, e.g.,
a Student distribution with any degrees of freedom, then expected marginal
utility explodes under power utility. A similar result is true for expected
utility instead of expected marginal utility, but we shall not expand on this.
Note that what is relevant here is whether ε1,T (not exp(ε1,T )) is heavy-tailed
to the left or not. If ε1,T is heavy-tailed rather than light-tailed to the left,
then exp(ε1,T ) has, loosely speaking, more probability mass near zero.

The fragility of expected power utility to heavy-tailed distributional as-
sumptions was noted earlier, e.g., by Geweke (2001). More recently, in the
context of catastrophic climate change, Weitzman (2009) pointed out that
not only expected utility but also expected marginal utility, and hence the
intertemporal marginal rate of substitution, may become infinite with power
utility and heavy-tailed log consumption, inducing unacceptable conclusions
in cost-benefit analyses.

Because of the incompatibility of power utility we need to look for a
different family of utility functions to represent preferences over heavy-tailed
risks in SDICE*. The Pareto family, introduced by Ikefuji et al. (2013) and
given by

U(x) = 1−
(

1 +
x

λ

)−k
(k > 0, λ > 0), (18)

enjoys a combination of appealing properties especially relevant in heavy-
tailed risk analysis. These properties were primarily normatively motivated
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but also have some empirical support (see Ikefuji et al., 2013, p. 45). Let

ARA(x) = −U
′′(x)

U ′(x)
, RRA(x) = −xU

′′(x)

U ′(x)
(19)

denote the local indexes of absolute and relative risk aversion. Under Pareto
utility,

ARA(x) =
k + 1

x+ λ
, RRA(x) =

x(k + 1)

x+ λ
, (20)

so that 0 < ARA(0) < ∞ and ARA(x) is non-negative decreasing and con-
vex, while RRA(0) = 0 and RRA(x) is increasing concave and bounded
between 0 and k + 1. Notice that the property that RRA(0) = 0 does not
imply risk-neutrality at x = 0, since ARA(0) = (k + 1)/λ > 0.

The family of Pareto utility functions is parsimonious yet flexible. Pareto
utility avoids the drawbacks that the popular families of power (constant
RRA) and exponential (constant ARA) utility exhibit ‘near the edges’. This
includes both the extreme behavior of power utility near the origin, where
ARA becomes infinite, and the extreme behavior of exponential utility for
large x, where RRA increases without bound. In view of Propositions 5.1–
5.3 in Ikefuji et al. (2015), Pareto utility is particularly appropriate for
heavy-tailed risk analysis. It ensures finiteness of both expected utility and
expected marginal utility, irrespective of distributional assumptions; see also
the discussion in Cerreia-Vioglio et al. (2015).

In particular, Proposition 5.2 (or 5.3) of Ikefuji et al. (2015) implies
that, under Pareto utility, expected marginal utility remains finite for any t.
Hence, the expected intertemporal marginal rate of substitution that trades
off current and future consumption remains finite under Pareto utility. Be-
cause of the boundedness of Pareto utility (cf. Proposition 5.1 of Ikefuji et al.,
2015), we see that expected utility also remains finite under Pareto utility, ir-
respective of distributional assumptions. We conclude that the Pareto family
represents a suitable choice of utility functions when analyzing heavy-tailed
risk in SDICE*.

6 Main findings

We now have a stochastic economy-climate framework and a solution method,
and this permits a variety of applications and analyses, including exploring
fundamental questions such as whether the social planner would abate and
invest more or less, and how much, in the presence of uncertainty or under
the manifestation of catastrophic risk.
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When interpreting the results, it is important to understand whether the
results obtained from IAMs have a normative or a descriptive meaning. While
climate models are typically interpreted descriptively, the use of optimization
suggests a normative perspective. Gordon et al. (1987) noted, however, that
the results derived from IAMs provide an approximation to an economically
efficient market equilibrium, and therefore don’t have a normative meaning
per se.

In the current section, we numerically solve and analyze the base SDICE*
model given by scenario (i) with a simple iid specification of stochasticity.
In Section 6.1 we discuss the parameter choices pertaining to the preferences
(i.e., the social planner’s utility function) and beliefs (i.e., the probability
distribution of the shocks), and in Section 6.2 we compare the results of
Nordhaus’ solution to DICE, our solution to DICE, referred to as DICE*,
and DICE* under Pareto utility instead of power utility; all in a deterministic
setting.

Then we introduce stochasticity. In Section 6.3 we analyze the effects of
uncertainty on the optimal abatement, consumption, and investment policies,
focusing on optimal policies along the expected trajectory of the shocks, i.e.,
in the ‘center’ of the probability distribution. In Section 6.4 we explore the
effects at the ‘edges’ of the probability distribution, that is, we ask what
happens to the optimal policies upon the manifestation of a large negative
shock. In Section 6.5 we analyze the effect of heavy-tailed versus light-tailed
uncertainty.

In Section 7 we shall consider extensions to the base SDICE* model,
allowing in particular for an uncertain damage parameter, uncertainty in the
emissions-to-output ratio, and uncertainty through technological efficiency.

6.1 Setting and base parameters

We shall consider both light-tailed and heavy-tailed probability distributions
for the error terms εj,t, j = 1, . . . , 4. Following our discussion in Section 3, we
consider both a normal distribution (light tails) and a Student distribution
(heavy tails). Under normality, the damage-abatement fraction d̄t = dtu1,t
has a finite expectation. Under a Student distribution, its expectation is
infinite. Various routes lead to heavy-tailed distributional assumptions in
economy-climate models. For instance, light-tailed distributions for input
variables may generate heavy-tailed distributions for output variables via
feedback loops (see e.g., Roe and Baker, 2007, and Mahadevan and Deutch,
2010). The heavy-tailed Student distribution we employ can also be in-
terpreted as the posterior predictive distribution of a normal distribution
with uncertain standard deviation as suggested in Geweke (2001), Weitzman
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(2009), and Pindyck (2011).
We need to specify adequate values for the uncertainty parameters τj and

for the number of degrees of freedom of the Student distribution. Let us
consider τ4 first. The stochasticity generated by ε4,t captures uncertainty
about technological efficiency affecting GDP. Historical variation in GDP
may therefore serve as a sensible proxy for τ4. Barro (2009) calibrates the
standard deviation of log GDP to a value of 0.02 on an annual basis, which
corresponds to about 0.045 over a five-year horizon. We will therefore con-
sider values of τ4 in the set {0, 0.02, 0.04, 0.06}. Since scenario (iv) is related
to scenarios (i), (ii), and (iii) through (6) and (3), and also to make it possible
to compare the impact of the four scenarios, we choose the same range for
τ1–τ3. Throughout this section we focus on uncertainty through the damage-
abatement fraction (τ1 > 0, τ2 = τ3 = τ4 = 0) and assume the errors to
be iid. Other assumptions on τj, in particular (τ2 > 0, τ1 = τ3 = τ4 = 0),
(τ3 > 0, τ1 = τ2 = τ4 = 0), and (τ4 > 0, τ1 = τ2 = τ3 = 0), are postponed to
Section 7.

We also need to consider the question of whether or not the stochasticity
is light- or heavy-tailed. A (partial) answer to this question is contained in
Ursúa (2010), who claims that the growth rate of GDP features heavy tails.
We choose the number of degrees of freedom of the Student distribution
equal to 10. Our parameter choices then ensure that the summary statistics,
including the ‘tail index’, of output growth rates generated by our model
resemble those observed in empirical data.

Finally, we need to specify values for the parameters of the utility func-
tions. In the 2016 version of the DICE model, Nordhaus uses a power utility
function with constant relative risk aversion coefficient equal to α = 1.45. For
comparability, we choose the same value of α when we employ power utility.
When we consider the Pareto utility function, we wish to mimic power util-
ity along the expected trajectory of ε1,t, i.e., in the center of the probability
distribution. With this objective in mind we calibrate the parameters of the
Pareto utility function to κ = 1.322 and λ = 0.0108.

6.2 DICE versus DICE*

In a nonstochastic world we find that the optimal policy and state variables
under DICE closely match their counterparts under DICE* with power util-
ity. In fact, the maximum absolute difference is 0.1 over the period that
we consider; see Tables 1–2. The differences between DICE and DICE* are
mainly due to differences in the solution method, the absence of ad hoc
bounds ‘for stability’ on some state and control variables in DICE*, and the
absence of a heuristic (rather than an optimal) solution for the last ten time

22



periods in DICE*. We also note that abatement at time t = 1 is fixed at
0.03 in DICE*, as in DICE.

When we move from power utility to Pareto utility, we see that the opti-
mal policy and state variables under DICE* with Pareto utility match their
counterparts under DICE* with power utility quite closely, and that this ap-
plies to both the economy and climate parts of the DICE* model. A power
utility maximizer consumes less and invests and abates more compared to a
Pareto utility maximizer. Indeed, a power utility maximizer has a stronger
motive to avoid building up a climate-economy with low damage-abatement
reduced output, and therefore uniformly consumes less and invests and abates
more.

6.3 Light tails in the center

We now introduce stochasticity and consider the SDICE* model with iid
normally distributed errors ε1,t (i.e., light tails), for different values of the
degree of uncertainty τ1, under both power and Pareto utility. (Recall that
we assume τj = 0 for j = 2, 3, 4 in this section.)

We focus on the ‘center’ of the distribution by considering shocks along
the expected trajectory of ε1,t. Specifically, the results reported here are de-
rived by solving for the optimal initial (t = 1) policies under uncertainty, and
then computing the optimal policies over the following periods 2 to 16 under
uncertainty, by assuming that the realized shocks in the previous periods are
equal to zero.

The three panels in Table 3 present the results for optimal consumption,
investment, and abatement, respectively. Our benchmark is τ1 = 0, which is
the case without uncertainty, that is, DICE*. The introduction of light-tailed
uncertainty in the damage-abatement fraction of DICE* leads to a reduction
of abatement for both power and Pareto utility. Conditional upon the shocks
realizing their expected value, that is zero, we find a reduction in abatement
in all periods. Consumption and investment are relatively less affected.

Lower levels of abatement correspond to choosing higher levels of con-
centration, and this has a negative propagation effect in our model. Con-
versely, investment has a positive propagation effect. When faced with un-
certainty about the damage-abatement fraction, the social planner sacrifices
some abatement to maintain investment (first) and consumption (later). In
the presence of uncertainty, the power utility maximizer continues to con-
sume less in early periods and invest and abate more in all periods compared
to the Pareto utility maximizer.

Overall, the effect of uncertainty on the optimal policies is small when
considering a social planner at the center of the probability distribution.
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Indeed, we find reasonably small changes in the optimal policy variables as
long as the shocks take values along their expected trajectory. The changes
in optimal control and state variables are virtually always ‘monotone’ in the
variance of the shock as represented by τ1.

6.4 Light tails at the edges

In the previous subsection we evaluated the effect of uncertainty on the op-
timal policies in the center of the distribution. Now we analyze the optimal
policies at the ‘edges’, under the manifestation of catastrophic risk (that is,
tail events). In particular, we analyze how a realized shock impacts the op-
timal policies, under future uncertainty. (We don’t consider specific forms
of learning whereby the social planner is more ‘on-edge’ because of a recent
shock.)

Figures 3 and 4 present optimal consumption C∗t and optimal abatement
µ∗t as a function of ε1,t at time t = 1 and at time t = 2, respectively (recall
that abatement at time t = 1 is fixed), for both the power and Pareto SDICE*
models. Considering SDICE* against the benchmark given by DICE* but
now allowing the light-tailed shocks to take large negative values, we find
that the optimal policy variables are more affected at the edges than in the
center. In fact, towards the edges we observe pronounced differences in the
optimal policy variables, both within and between the SDICE* models.

As expected, optimal policy derived under certainty — lines with label
DICE* — does not respond to negative shocks. A power utility maximizer
has a stronger motive to abate as a precaution (cf. Kimball, 1990) compared
to a Pareto utility maximizer, and this amplifies with adverse realizations of
ε1,t. Under such adverse circumstances, the power utility maximizer keeps
abatement at a substantial level, but this comes at the cost of lower con-
sumption. While the presence of uncertainty reduces abatement (as found in
Section 6.3), a power utility maximizer puts larger emphasis on keeping up
abatement in adverse circumstances compared to a Pareto utility maximizer.

6.5 Heavy tails

Heavy-tailed risk is represented by a Student-t distribution. The random
shock ε1,t is not N(0, 1) anymore but rather follows a t-distribution with 10
degrees of freedom, so that var(ε1,t) = 1.25. Power utility is not compatible
with heavy-tailed risk: its expected intertemporal marginal rate of substitu-
tion trading off current and future uncertain consumption is infinite. Hence,
we only consider Pareto utility.
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The three panels in Table 4 report optimal values in the SDICE* model
under Pareto utility for consumption, investment, and abatement, both for
light- and heavy-tailed uncertainty, and for different values of τ1. In the cen-
ter of the distribution, the changes are small when we compare the impact
of heavy-tailed versus light-tailed uncertainty. As in Sections 6.3 and 6.4, we
observe a reduction in abatement under damage-abatement fraction uncer-
tainty, we find reasonably small changes in the optimal policy variables as
long as the shocks take values close to or equal to their expectation (in the
center of the distribution), and we see that the changes are ‘monotone’ in
the variance of the shock.

We also report results at the ‘edges’. The changes in the optimal policy
variables between the Pareto utility models with light and heavy tails are
virtually identical; see Figure 5. This means that under heavy tails and
towards the edges, pronounced differences occur both within and between
the power and Pareto models. Contrary to the ‘discontinuity’ that occurs
under power utility when we move from light to heavy tails, the Pareto
utility maximizer only very slightly adapts his/her optimal policies. In an
influential paper, Weitzman (2009) indicated that power utility is fragile with
respect to heavy-tailed consumption risk, in the sense that expected marginal
utility may become infinite. Our results confirm that this is remedied when
preferences are compatible with statistical assumptions, that is, by avoiding
an ex ante incompatible model specification.

In summary, under heavy tails the main findings of Sections 6.3 and 6.4
broadly remain valid, reinforcing their robustness.

7 Extensions

We generalize the base SDICE* model in three directions. First, we allow for
uncertainty in the damage parameter; next, for an uncertain emissions-to-
output ratio; and finally, we allow for uncertainty in technological efficiency.
The discussion of these three extensions is brief to save space. Details are
available from the authors upon request.

7.1 Uncertainty in the damage parameter

In this extension we consider parametric uncertainty by supposing that sto-
chasticity enters SDICE* only through the damage parameter. That is, we
replace ξ in (6) by ξ̄t = ξu2,t and suppose τ2 > 0 while τ1 = τ3 = τ4 = 0. We
explore how this change in stochasticity impacts our three main findings in
Sections 6.3–6.5.
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In a setting that mimics Section 6.3, i.e., with ε2,t realizing its expected
trajectory, we find that all the optimal policy variables are now nearly insensi-
tive to the presence of uncertainty. The reason is that, under the parameters
and levels of uncertainty that we consider, the term ξ̄tH

2
t contributes rela-

tively little to the budget constraint. Hence, the impact of uncertainty about
the damage-abatement fraction analyzed in Section 6.3 dominates the impact
of uncertainty about the damage parameter. The power utility maximizer
continues to consume less in early periods and to invest and abate more in
all periods in comparison to the Pareto utility maximizer.

When tail events manifest themselves analogous to Section 6.4, optimal
consumption reduces (increases) when ε2,1 takes large positive (negative) val-
ues, both under power and Pareto utility. Note that under the present
scenario, ε2,t taking large negative values is a prosperous event: it means
that the realized damage parameter is low. This is illustrated in Figure 6.
Furthermore, optimal abatement is still nearly insensitive even under large
realizations of ε2,2 (whether positive or negative).

Finally, we explore the impact of heavy-tailed risk associated to the
damage parameter, adopting the same distributional assumptions as in Sec-
tion 6.5. We find that the two previous results are reconfirmed: the near
insensitivity of the optimal policy variables in the center and the fact that
optimal current consumption is decreasing (increasing) in the extent of the
positive (negative) shock in ε2,1.

7.2 Emissions-to-output uncertainty

We next suppose that τ3 > 0 and τ1 = τ2 = τ4 = 0, so that uncertainty
enters SDICE* only through the emissions-to-output ratio σt in (3), and not
through the damage-abatement fraction and the budget constraint in (6), as
previously. We analyze how our three main findings in Sections 6.3–6.5 are
affected under this alternative SDICE* model.

We consider first the optimal policies under iid normally distributed er-
rors ε3,t, where we restrict our attention to the center of the distribution by
considering realizations of ε3,t along the expected trajectory, as in Section 6.3.
All three policy variables are now insensitive to the presence of uncertainty
along the expected trajectory: the impact on the optimal policies of uncer-
tainty on the emissions-to-output ratio appears to be negligible in the center
of the distribution. The prime reason is that the budget constraint is not
affected by uncertainty in the emissions-to-output ratio. Thus, in the center,
the effect of emissions-to-output uncertainty is dominated by the effect of
uncertainty on the damage-abatement fraction analyzed previously.

Next, considering the manifestation of tail events analogous to Section 6.4,
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we find an interesting pattern: while optimal consumption remains relatively
insensitive to uncertainty in the emissions-to-output ratio, also under tail
scenarios, optimal abatement decreases (increases) pronouncedly when ε3,2
takes large negative (positive) values under both power and Pareto utility.
This is illustrated in Figure 7.

This pattern can be explained by the fact that, in the model, abatement
directly ‘acts upon’ the emissions-to-output ratio, while the latter does not
appear in the budget constraint, contrary to what happens in Section 6.4.
Note also that the scenario in which ε3,2 takes large negative values is in
fact a very prosperous (rather than adverse) scenario in which emissions are
relatively low compared to output, thus facilitating lower abatement.

Finally, we analyze the introduction of heavy-tailed risk attached to the
emissions-to-output ratio, using the same distributional assumptions as in
Section 6.5. In this setting, the previous two findings are again reconfirmed:
insensitivity of the optimal policies along the expected trajectory and de-
creasing (increasing) optimal abatement in the extent of a negative (positive)
shock in ε3,2.

7.3 Uncertainty in technological efficiency

We finally suppose that τ4 > 0 and τ1 = τ2 = τ3 = 0, which means that
uncertainty enters SDICE* through technological efficiency At in (1) and
hence (6). This implies in particular that uncertainty appears again in the
budget constraint just like in Section 6, and the current extension can techni-
cally be viewed as a marriage between the settings of Sections 6 and 7.2. We
analyze again the impact of this alternative specification in the spectrum of
uncertainties that our model formulation accommodates on the three main
findings in Sections 6.3–6.5.

With iid normally distributed errors ε4,t taking values along their expected
trajectory, i.e., in a setting analogous to Section 6.3, all three optimal policies
under the current extension closely resemble those observed under the base
SDICE* model of Section 6.3. Intuitively, this follows from the insensitivities
of the optimal policies along the expected trajectory observed in Section 7.2
and the fact that the current extension is technically a marriage between the
base model and the first extension.

Next, when catastrophic risk realizes, that is, when ε4,t takes large neg-
ative values analogous to the analysis at the edges in Section 6.4, optimal
consumption responds exactly as in Figure 3. However, optimal abatement,
decreases with the extent of the negative shock ε4,2 for both power and Pareto
utility; see Figure 8. The latter effect is in part induced by the abatement
results in Section 7.2, illustrated in Figure 7.
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Finally, analyzing heavy-tailed uncertainty in technological efficiency, em-
ploying the same distributional assumptions as in Section 6.5, we recover the
exact same pattern as in scenario (i).

Apparently, the impact of uncertainty is similar whether we model it
through its impact in the damage-abatement fraction or through technolog-
ical efficiency. The key difference between the base SDICE* model and our
third extension is that, while uncertainty in the damage-abatement fraction
increases optimal abatement for the power utility maximizer, this effect is
suppressed in adverse technology scenarios in which budgets and hence emis-
sions are lower, thus facilitating lower abatement.

8 Conclusions

We have developed a stochastic dynamic finite-horizon economic framework
with climate change and a regression-based method for numerically solving
the associated optimization problem. Our framework (SDICE*) is based on
Nordhaus’ deterministic DICE model, but it incorporates, possibly heavy-
tailed, stochasticity. Upon applying our solution method to SDICE* our
analysis reveals that the introduction of uncertainty into a deterministic in-
tegrated assessment model can have a substantial impact on the optimal
policies of abatement, consumption, and investment, depending on the na-
ture and extent of the uncertainty and the social planner’s preferences.

A general criticism about integrated assessment models, whether deter-
ministic or stochastic, is that some of the inputs such as functional forms
and parameters are to some extent arbitrary, and yet quite relevant for the
outputs they predict. This also applies to canonical benchmark integrated as-
sessment models such as Nordhaus’ DICE model. SDICE* provides a frame-
work to assess the effects of a rich spectrum of uncertainties related to the
complex interplay between climate and the economy on the optimal consump-
tion, investment and abatement policies. While we have made a significant
effort to calibrate our parameters to resemble e.g., output growth rates gen-
erated by our model, we prefer to interpret our results not as direct literal
policy implications, but rather as implications about the extent and sensitiv-
ity of the interactions between the main variables of interest and about the
roles played by the various variables, dynamic equations, functional forms,
and parameters.

If we combine heavy-tailed uncertainty about climate change and its eco-
nomic damage with an arbitrary utility function, such as the conventional
power utility function, we may be confronted with infinite expected marginal
utility. In that case, the model would predict that the social planner should
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reduce current consumption to ultra-low levels, in order to limit the possibil-
ity of an economy-climate catastrophe. The resolution to this unacceptable
conclusion in cost-benefit analysis is to impose compatibility conditions on
beliefs and preferences.

Our results show that introducing light-tailed uncertainty to a conven-
tional economy-climate model with power utility can yield reduced levels of
current consumption, driven by a strong desire to save us from an economy-
climate catastrophe. This can be especially so under very adverse scenarios,
in which a relatively strong substitution from current consumption to precau-
tion occurs. This effect is more limited under Pareto utility. These findings
remain intact, and get exacerbated, under heavy tails.

Conventional integrated assessment models can thus overemphasize pre-
cautionary action when they are confronted with uncertainty and heavy tails.

ACKNOWLEDGEMENTS. We are very grateful to the editor of the
Journal of Econometrics, to the editors of this special issue, and to three ref-
erees for their comments and suggestions that have significantly improved our
paper. We are also grateful to Graciela Chichilnisky, John Einmahl, Johan
Eyckmans, Reyer Gerlagh, Christian Groth, David Hendry, John Knowles,
Sjak Smulders, Peter Wakker, Aart de Zeeuw, and Amos Zemel for feedback.
This research was funded in part by the Japan Society for the Promotion of
Science (JSPS) under grant C-22530177 (Ikefuji), by the Netherlands Organi-
zation for Scientific Research (NWO) under grant Vidi-2009 (Laeven) and by
the Social Sciences and Humanities Research Council’s Insight Development
Grant 430-2015-00073 (Muris).

29



References

Ackerman, F., Stanton, E. A., Bueno, R., 2010. Fat tails, exponents, ex-
treme uncertainty: Simulating catastrophe in DICE. Ecological Eco-
nomics 69, 1657–1665.

Barro, R. J., 2009. Rare disasters, asset prices, and welfare costs. American
Economic Review 99, 243–264.

Berger, L., Emmerling, J., Tavoni, M., 2017. Managing catastrophic climate
risks under model uncertainty aversion. Management Science 63, 749–
765.

Bernoulli, D., 1738. Specimen theoriae novae de mensura sortis. Commen-
tarii Academiae Scientiarum Imperialis Petropolitanae 5, 175–192.

Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, Third
Edition. Athena Scientific, Belmont, MA.

Brandt, M. W., Goyal, A., Santa-Clara, P., Stroud, J. R., 2005. A sim-
ulation approach to dynamic portfolio choice with an application to
learning about return predictability. The Review of Financial Studies
18, 831–873.

Brumm, J., Scheidegger, S., 2017. Using adaptive sparse grids to solve
high-dimensional dynamic models. Econometrica 85, 1575–1612.

Buchholz, W., Schymura, M., 2012. Expected utility theory and the tyranny
of catastrophic risks. Ecological Economics 77, 234–239.

Cai, Y., Judd, K. L., Lontzek, T. S., 2012. DSICE: A dynamic stochastic
integrated model of climate and economy. RDCEP Working Paper No.
12-02. Available at SSRN: https://ssrn.com/abstract=1992674.

Cai, Y., Lenton, T. M., Lontzek, T. S., 2016. Risk of multiple interacting
tipping points should encourage rapid CO2 emission reduction. Nature
Climate Change 6, 520–525.

Carriere, J. F., 1996. Valuation of the early-exercise price for options using
simulations and nonparametric regression. Insurance: Mathematics
and Economics 19, 19–30.

Cerreia-Vioglio, S., Dillenberger, D., Ortoleva, P., 2015. Cautious expected
utility and the certainty effect. Econometrica 83, 693–728.

30



Clément, E., Lamberton, D., Protter, P., 2002. An analysis of a least squares
regression method for American option pricing. Finance and Stochas-
tics 6, 449–471.

Dietz, S., 2011. High impact, low probability? An empirical analysis of risk
in the economics of climate change. Climatic Change 108, 519–541.

Egloff, D., 2005. Monte Carlo algorithms for optimal stopping and statisti-
cal learning. The Annals of Applied Probability 15, 1396–1432.

Egloff, D., Kohler, M., Todorovic, N., 2007. A dynamic look-ahead Monte
Carlo algorithm for pricing Bermudan options. The Annals of Applied
Probability 17, 1138–1171.

Geweke, J., 2001. A note on some limitations of CRRA utility. Economics
Letters 71, 341–345.

Gillingham K., Nordhaus, W. D., Anthoff, D., Blanford, G., Bosetti, V.,
Christensen, P., McJeon, H., Reilly, J., Sztorc, P., 2015. Modeling un-
certainty in climate change: A multi-model comparison. NBER Work-
ing Paper No. 21637.

Gordon, R. B., Koopmans, T., Nordhaus, W., Skinner, B., 1987. Toward
a New Iron Age? Quantitative Modeling of Resource Exhaustion. Har-
vard University Press, Cambridge, Mass.

Howard, P. H., Sterner, T., 2017. Few and not so far between: a meta-
analysis of climate damage estimates. Environmental Resource Eco-
nomics 68, 197–225.

Hwang, I. C., Reynès, F., Tol, R. S. J., 2013. Climate policy under fat-tailed
risk: An application of DICE. Environmental and Resource Economics
56, 415–436.

Ikefuji, M., Laeven, R. J. A., Magnus, J. R., Muris, C., 2013. Pareto utility.
Theory and Decision 75, 43–57.

Ikefuji, M., Laeven, R. J. A., Magnus, J. R., Muris, C., 2015. Expected
utility and catastrophic consumption risk. Insurance: Mathematics
and Economics 64, 306–312.

Jensen, S., Traeger, C. P., 2014a. Optimal climate change mitigation under
long-term growth uncertainty: Stochastic integrated assessment and
analytic findings. European Economic Review 69, 104–125.

31



Jensen, S., Traeger, C. P., 2014b. Optimally climate sensitive policy under
uncertainty and learning. Working paper, presented at the Confer-
ence on Sustainable Resource Use and Economic Dynamics (SURED),
Ascona, Switzerland.

Keller, K., Bolker, B. M., Bradford, D. F., 2004. Uncertain climate thresh-
olds and optimal economic growth. Journal of Environmental Eco-
nomics and Management 48, 723–741.

Kelly, D. L., Kolstad, C. D., 1999. Bayesian learning, growth, and pollution.
Journal of Economic Dynamics & Control 23, 491–518.

Kimball, M., 1990. Precautionary saving in the small and in the large.
Econometrica 58, 53–73.

King, R. G., Rebelo, S. T., 1999. Resuscitating real business cycles, in:
Handbook of Macroeconomics, Vol. 1 (Eds. J. B. Taylor and M. Wood-
ford), Elsevier, Chapter 14.
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Figures and Tables

Figure 1: Akaike’s Information Criterion (AIC) for the sets of basis functions
up to polynomial order 5 against the time period
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Figure 2: Akaike’s Information Criterion (AIC) for the sets of cross terms
against the time period
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Figure 3: Consumption C1: SDICE* with normal errors and τ1 = 0.00, 0.02,
0.04, and 0.06 — power vs Pareto, scenario (i)
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Figure 4: Abatement µ2: SDICE* with normal errors and τ1 = 0.02, 0.04,
and 0.06 — power vs Pareto, scenario (i)
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Figure 5: Abatement µ2: SDICE* under Pareto utility and τ1 = 0.02, 0.04,
and 0.06 — normal (solid) vs Student (dotted), scenario (i)
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Figure 6: Consumption C1: SDICE* with normal errors and τ2 = 0.02, 0.04,
and 0.06 — power vs Pareto, scenario (ii)
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Figure 7: Abatement µ2: SDICE* with normal errors and τ3 = 0.02, 0.04,
and 0.06 — power vs Pareto, scenario (iii)
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Figure 8: Abatement µ2: SDICE* with normal errors and τ4 = 0.02, 0.04,
and 0.06 — power vs Pareto, scenario (iv)
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Table 1: State variables — DICE vs DICE*, power vs Pareto
DICE power 2.120 2.429 2.457 2.488

Capital DICE* power 2.120 2.328 2.421 2.491
(Kt/Yt) DICE* Pareto 2.120 2.037 2.128 2.228

DICE power 8.091 4.938 3.108 2.084
Concentration DICE* power 8.091 4.943 3.035 2.018
(Mt/Yt) DICE* Pareto 8.091 5.342 3.378 2.331

DICE power 0.850 1.694 2.525 3.247
Temperature DICE* power 0.850 1.673 2.460 3.148
(Ht) DICE* Pareto 0.850 1.698 2.555 3.361
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Table 2: Control variables — DICE vs DICE*, power vs Pareto
Model Utility 2015 2040 2065 2090
DICE power 0.738 0.819 0.798 0.778

Consumption DICE* power 0.762 0.824 0.798 0.777
(Ct/Yt) DICE* Pareto 0.799 0.862 0.830 0.803

DICE power 0.317 0.315 0.291 0.277
Investment DICE* power 0.277 0.311 0.293 0.280
(It/Yt) DICE* Pareto 0.217 0.275 0.265 0.256

DICE power 0.000 0.002 0.004 0.007
Abatement cost DICE* power 0.000 0.003 0.005 0.007
fraction (ωt) DICE* Pareto 0.000 0.001 0.001 0.002
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Table 3: SDICE* with normal errors — power vs Pareto, scenario (i)
power Pareto

t\τ1 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Consumption Ct
2015 80.18 80.26 80.31 80.34 84.02 84.06 84.07 84.06
2040 169.00 168.86 168.72 168.57 166.86 166.89 166.94 167.00
2065 306.44 307.13 307.75 308.38 301.58 301.88 302.29 302.73
2090 491.41 491.00 490.40 489.83 484.42 484.29 484.24 484.25

Investment It
2015 29.15 29.02 28.93 28.88 22.78 22.70 22.69 22.70
2040 63.82 63.93 64.14 64.39 53.22 53.18 53.21 53.31
2065 112.48 111.89 111.57 111.33 96.19 95.97 95.84 95.80
2090 177.25 177.46 178.03 178.69 154.34 153.94 153.91 154.02

Abatement µt
2015 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
2040 0.361 0.357 0.354 0.351 0.205 0.204 0.202 0.200
2065 0.523 0.517 0.511 0.506 0.323 0.318 0.312 0.307
2090 0.719 0.717 0.714 0.711 0.474 0.469 0.464 0.460

41



Table 4: SDICE* under Pareto utility — light- vs heavy-tailed, scenario (i)
τ1 = 0.02 τ1 = 0.04 τ1 = 0.06

light heavy light heavy light heavy
Consumption Ct
2015 84.06 84.06 84.07 84.07 84.06 84.06
2040 166.89 166.89 166.94 166.94 167.00 167.00
2065 301.88 301.88 302.29 302.29 302.73 302.73
2090 484.29 484.29 484.24 484.24 484.25 484.25

Investment It
2015 22.70 22.70 22.69 22.69 22.70 22.70
2040 53.18 53.18 53.21 53.21 53.31 53.31
2065 95.97 95.97 95.84 95.84 95.80 95.80
2090 153.94 153.94 153.91 153.92 154.02 154.02

Abatement µt
2015 0.030 0.030 0.030 0.030 0.030 0.030
2040 0.204 0.204 0.202 0.202 0.200 0.200
2065 0.318 0.317 0.312 0.312 0.307 0.306
2090 0.469 0.469 0.464 0.464 0.460 0.459
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