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Abstract: We derive necessary and sufficient conditions on the utility

function of the expected utility model to avoid fragility of a cost-benefit

analysis to distributional assumptions. The conditions ensure that expected

(marginal) utility remains finite also under heavy-tailed distributional as-

sumptions. We apply these conditions to the context of economy-climate

catastrophe. We specify a stylized two-period stochastic economy-climate

model. We show that, under expected power utility, the model is fragile

to heavy-tailed distributional assumptions and, based on our derived con-

ditions, we solve the model for two cases with compatible economic and

statistical assumptions.
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1 Introduction

An economist, when asked to model decision making under risk or uncer-

tainty for normative purposes, would typically work within the expected

utility framework with constant relative risk aversion (that is, power util-

ity). A statistician, on the other hand, would model economic catastrophes

through probability distributions with heavy tails. Unfortunately, expected

power utility is fragile with respect to heavy-tailed distributional assump-

tions: expected utility may fail to exist or it may imply conclusions that are

‘incredible’.

Economists have long been aware of this tension between the expected

utility paradigm and distributional assumptions (Menger, 1934), and the

discussions in Arrow (1974), Ryan (1974), and Fishburn (1976) deal explic-

itly with the trade-off between the richness of the class of utility functions

and the generality of the permitted distributional assumptions. Compelling

examples in Geweke (2001) corroborate the fragility of the existence of ex-

pected power utility with respect to minor changes in distributional assump-

tions.

The combination of heavy-tailed distributions and the power utility fam-

ily may not only imply infinite expected utility, but also infinite expected

marginal utility, and hence, via the intertemporal marginal rate of substi-

tution (the pricing kernel), lead to unacceptable conclusions in cost-benefit

analyses. The latter aspect was recently emphasized by Weitzman (2009) in

the context of catastrophic climate change. Weitzman also argues that at-

tempts to avoid this unacceptable conclusion will necessarily be non-robust.

Related questions about the validity of expected utility analysis in a catas-

trophic climate change context were analyzed by Chichilnisky (2000) and

Tol (2003), and, more recently, by Horowitz and Lange (2009), Karp (2009),

Arrow (2009), Nordhaus (2009, 2011), Pindyck (2011), Buchholz and Schy-

mura (2012), Chanel and Chichilnisky (2013) and Hwang, Reynès and Tol

(2013).

In this paper we contribute to this literature on the question of how to
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conduct expected utility analysis in the presence of catastrophic risks by de-

riving general theoretical compatibility results on the utility function of the

expected utility model, leaving probability distributions unrestricted, and

we illustrate these results in a stylized two-period economy-climate model

with catastrophic risk. Our theoretical results are context-free. But we have

the context of catastrophe in an economy-climate model in mind. Our paper

is built on four beliefs, which will recur in our analysis:

Catastrophic risks are important. To study risks that can lead to catas-

trophe is important in many areas, e.g., financial distress, traffic accidents,

dike bursts, killer asteroids, nuclear power plant disasters, and extreme cli-

mate change. Such low-probability high-impact events should not be ignored

in cost-benefit analyses for policy making.

A good model ‘in the center’ is not necessarily good ‘at the edges’. Models

are approximations, not truths, and approximations may not work well if

we move too far away from the point of approximation. In our context

of catastrophe in an economy-climate model, the widely adopted family of

power utility functions, often appropriate when one considers large inputs

remote from zero, may not work well for decision making under heavy-tailed

risks with non-negligible support beyond the usual domain of inputs.

The price to reduce catastrophic risk is finite. Are we willing to spend

everything to avoid children being killed at a dangerous street? Or dikes

to burst? Or a power plant to explode? Or a killer asteroid to hit the

Earth? Or climate to change rapidly? No, we are not. To assume the

opposite (that a society would be willing to offer all of its current wealth

to avoid or mitigate catastrophic risks) is not credible, not even from a

normative perspective. In our context, there is a limit to the amount of

current consumption that the representative agent is willing to give up in

order to obtain one additional certain unit of future consumption, no matter

how extreme and irreversible an economy-climate catastrophe may be. In

other words: the expected pricing kernel is finite.

Light-tailed risks may result in heavy-tailed risk. When x is normally

distributed (light tails) then 1/x has no moments (heavy tails). Also, when

x is normally distributed then ex has finite moments, but when x follows a

Student distribution then ex has no moments. In the context of extreme cli-
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mate change: temperature has fluctuations but one would not expect heavy

tails in its distribution. This does not, however, imply that functions of

temperature cannot have heavy tails. For example, it may well be reason-

able to use heavy-tailed distributional assumptions to model future (log)

consumption.

We start our analysis by deriving necessary and sufficient conditions on

the utility function of the expected utility model to avoid fragility of a cost-

benefit analysis to distributional assumptions. The conditions we derive

ensure that expected utility and expected marginal utility remain finite also

under heavy-tailed distributional assumptions, and are context-independent,

hence of independent interest. They guarantee a valid axiomatization of

expected utility and avoid incredible consequences in a cost-benefit analysis.

Our analysis exploits the budget restriction of the optimal consumption

problem to derive as weak conditions as possible on the utility function.

Next, we apply our general results to the particular setting of economy-

climate catastrophe. To allow for catastrophic risk, we specify a stylized

stochastic economy-climate model, adapting the canonical Nordhaus’ (2008)

deterministic dynamic integrated climate and economy (DICE) model by

allowing for simple stochasticity, in the spirit of Weitzman (2009). Next, we

solve a two-period version of the model, first with power utility and light-

tailed distributional assumptions. Since the assumption of expected power

utility is incompatible with heavy-tailed distributional assumptions, we then

restrict attention to utility functions that satisfy the derived compatibility

conditions, and solve our stochastic economy-climate model with the well-

known exponential utility function and also with the less well-known (but

more suitable) ‘Pareto’ utility function, under both light- and heavy-tailed

distributional assumptions.

The paper is organized as follows. Section 2 studies expected (marginal)

utility and catastrophic risk in a general setting, deriving results on the

trade-off between permitted distributional assumptions and the existence

of expected (marginal) utility, which are of interest in their own right. In

Section 3 we propose a simplified version of Nordhaus’ economy-climate

model, introduce uncertainty in the spirit of Weitzman to obtain a stylized

stochastic integrated assessment model of climate economics, and specialize
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the model to two periods only. In Section 4, we present (partial) results for

power utility, which is incompatible with heavy tails, and for exponential and

Pareto utility, which are compatible with heavy tails. Section 5 concludes.

There are two appendices: Appendix A provides Kuhn-Tucker conditions

and Appendix B contains proofs of the propositions.

2 Expected utility and catastrophic risk

We formulate our cost-benefit analysis as a decision under uncertainty prob-

lem, in Savage (1954) style. We fix a set S of states of nature and we let A
denote a σ-algebra of subsets of S. One state is the true state. We also fix

a set C of consequences (outcomes, consumption) endowed with a σ-algebra

F . Since we are only interested in monetary outcomes, we may take C = R+.

A decision alternative (policy bundle) X is a measurable mapping from S
to C, so that X−1(A) ∈ A for all events A ∈ F . We assume that the class

of all decision alternatives X is endowed with a preference order �.

Definition 2.1 We say that expected utility (EU) holds if there exists a

measurable and strictly increasing function U : C → R on the space of

consequences, referred to as the utility function, and a probability measure P

on A, such that the preference order � on X is represented by a functional

V of the form X �→ ∫
S U(X(s)) dP = V (X). Thus, the decision alternative

X ∈ X is preferred to the decision alternative Y ∈ X if, and only if, V (X) ≥
V (Y ).1

We henceforth assume that U is defined for x ≥ 0, twice differentiable, and

such that U ′(x) > 0 and U ′′(x) < 0 for x > 0.

Since the axiomatization of EU by Von Neumann and Morgenstern

(1944) and Savage (1954), numerous objections have been raised against it.

These objections relate primarily to empirical evidence that the behavior of

agents under risk and uncertainty does not agree with EU. Despite impor-

tant developments in non-expected utility theory, EU remains the dominant

1In the Von Neumann and Morgenstern (1944) framework, utility U is subjective,

whereas the probability measure P associated with A is objective and known beforehand

(decision under risk). In the more general framework of Savage (1954) adopted here, the

probability measure itself can be, but need not be, subjective (decision under uncertainty).
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normative decision theory (Broome, 1991; Sims, 2001), and the current pa-

per stays within the framework of EU. Our results presented below in a sense

provide compatibility conditions under which expected utility theory may

reliably provide normatively appealing results, also in the presence of catas-

trophic risks. Of course, one may legitimately question whether EU is the

appropriate normative theory for decision making under catastrophic risks

and (continue a) search for better theories; see e.g., Chichilnisky (2000).

This is beyond our scope.

Definition 2.2 We say that a risk ε : S → R is heavy-tailed to the left

(right) under P if its moment-generating function is infinite: E (eγε) = ∞
for any γ < 0 (γ > 0).

Examples of heavy-tailed risks are the Student, lognormal, and Pareto

distributions. Heavy-tailed risks provide appropriate mathematical models

for low-probability high-impact events, such as environmental or financial

catastrophes. We state the following result, which dates back to Menger

(1934).

Proposition 2.1 If EU is to discriminate univocally among all possible

alternative outcome distributions, the utility function must be bounded.

Proposition 2.1 states that the EU functional is finite for all outcome

distributions if, and only if, the utility function is bounded. Moreover, the

axiomatization of EU is valid for all outcome distributions if, and only if, the

utility function is bounded. The implications are non-trivial: boundedness

of the utility function must hold not just in exotic situations but also in

more familiar and economically relevant settings involving high levels of

uncertainty. Only a combination of utility function and outcome distribution

that leads to finite expected utility is covered by the axiomatic justification

of EU.

Now consider a representative agent with time-additive EU preferences

and time-preference parameter ρ > 0. Consumption C1 is commonly re-

stricted to a budget-feasible consumption set which is subject to uncertainty

(ε1). We assume that the budget restriction takes the general form

C∗
1 (ε1) ≤ B exp(Aε1), B,A > 0, (1)
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which need not be best-possible. Here C∗
1 is optimal consumption at t = 1.2

We exploit (1) to derive compatibility conditions on the utility function.

We normalize (without loss of generality) the agent’s consumption by

setting C0 = 1, and we define the pricing kernel (intertemporal marginal

rate of substitution) as

P (C∗
1 ) =

U ′(C∗
1 )

(1 + ρ)U ′(1)
. (2)

The expectation E(P ) represents the amount of consumption in period 0

that the representative agent is willing to give up in order to obtain one

additional certain unit of consumption in period 1.

Let RRA(x) = −xU ′′(x)/U ′(x) and ARA(x) = −U ′′(x)/U ′(x) denote

relative and absolute risk aversion, respectively, and let

α∗ = inf
x>0

RRA(x), β∗ = sup
x>0

ARA(x).

The following result states that the expectation of the pricing kernel is

finite for all outcome distributions whenever the concavity index ARA(x) is

bounded.

Proposition 2.2 Assume that EU holds and that the budget feasibility re-

striction (1) applies.

(a) If α∗ > 0 and ε1 is heavy-tailed to the left under P, then E(P ) = ∞;

(b) If β∗ <∞ and α∗ = 0, then E(P ) <∞ for any ε1.

If the EU maximizer has decreasing absolute risk aversion and increasing

relative risk aversion, as is commonly assumed (Eeckhoudt and Gollier, 1995,

Section 4.2, Hypotheses 4.1 and 4.2), a complete and elegant characterization

of boundedness of the expected pricing kernel can be obtained, as follows.

Proposition 2.3 Assume that EU holds and that the budget feasibility re-

striction (1) applies. Assume furthermore that RRA(x) exists and is non-

negative and non-decreasing for all x ≥ 0 and that ARA(x) is non-increasing

for all x > 0. Then, E(P ) <∞ for any ε1 if and only if
∫ γ
0 ARA(x) dx <∞

for some γ > 0.

2In our economy-climate model of Section 3.1, and in the two-period setup of Sec-

tion 3.3, B = e−τ2/2Y1/(1 + ξH2
1 ) and A = τ .
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Remark 2.1 Notice that, when
∫ γ
0 ARA(x) dx = ∞ for some γ > 0, both

α∗ > 0 and α∗ = 0 can hold. If α∗ > 0 then we do not need the full force

of Proposition 2.3; it is sufficient that ε1 is heavy-tailed to the left. Then

E(P ) = ∞ by Proposition 2.2(a). If α∗ = 0 then heavy-tailedness alone is

not sufficient, but we can always find an ε1 such that E(P ) = ∞. When∫ γ
0 ARA(x) dx = ∞ then β∗ = ∞. But when

∫ γ
0 ARA(x) dx < ∞, both

β∗ <∞ and β∗ = ∞ can occur.

Remark 2.2 An example of an ARA satisfying
∫ γ
0 ARA(x) dx = ∞ and

α∗ > 0 is that of power utility. An example of an ARA satisfying
∫ γ
0 ARA(x) dx =

∞ and α∗ = 0 is a function which behaves as −1/(x log x) for values of x

close to 0 and in addition satisfies the conditions of the proposition.

An example of an ARA satisfying
∫ γ
0 ARA(x) dx < ∞ and β∗ = ∞

occurs when ARA(x) = x−δ (0 < δ < 1). An example of an ARA sat-

isfying
∫ γ
0 ARA(x) dx < ∞ and β∗ < ∞ occurs in the case of exponen-

tial utility in which ARA(x) = β (0 ≤ β < ∞). A sufficient condition

for
∫ γ
0 ARA(x) dx < ∞ to hold is that there exists 0 ≤ δ < 1 such that

lim supx↓0 xδARA(x) <∞.

The above propositions provide necessary and sufficient conditions on

the utility function to ensure that expected utility and expected marginal

utility (hence the expected pricing kernel) are finite, also in the presence of

heavy tails. These compatibility results are generally applicable to standard

multi-period welfare maximization problems. The importance of the results

lies in the fact that (i) if (minus) expected utility is infinite, the axiomatic

justification of EU is not valid, and (ii) if the expected pricing kernel is infi-

nite, then the amount of consumption in period 0 which the representative

agent is willing to give up in order to obtain one additional certain unit of

consumption in period 1 is infinite, which is not credible in most settings.

3 Economy-climate catastrophe

The results of the previous section can be applied to many situations in-

volving catastrophic risks. We choose economy-climate catastrophe as our
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illustration. In this section we first present a simplified deterministic Nord-

haus (2008)-type economy-climate model; then introduce simple stochastic-

ity, in the spirit of Weitzman (2009), but in a sufficiently general manner

allowing application in other contexts as well; and finally specialize the

infinite-horizon model to a two-period model.

Weitzman (2009) recently noted, in a highly stylized setting of extreme

climate change, that heavy-tailed uncertainty and power utility are incom-

patible, since this combination of uncertainty and preferences implies an

infinite expected pricing kernel. To avoid this, Weitzman introduces a lower

bound on consumption, argues that this lower bound is related to a param-

eter that resembles the value of a statistical life (VSL), and proves that the

expected pricing kernel approaches infinity as the value of this parameter

approaches infinity (the ‘dismal theorem’). Weitzman further argues that

this VSL-like parameter is hard to know.

Incompatible pairs of utility functions and distribution functions indeed

exist, in the sense that the expected pricing kernel or other important policy

variables become infinite. In fact, Section 2 presents necessary and sufficient

conditions on the utility functions for the expected pricing kernel to exist,

also under heavy tails. But we object to the dismal theorem for the following

reason. As we proved formally in Section 2 and shall illustrate numerically in

Section 4, the dismal theorem is based on an ex ante incompatible (invalid)

model specification. It is avoided when the economic model (utility function)

is compatible with the statistical model (heavy tails). Note that only then

Savage’s axiomatization of EU is valid.

3.1 A simple deterministic economy-climate model

Our framework is a simple economy-climate model in the spirit of Nord-

haus and Yang (1996) and Nordhaus (2008). It retains all essential features

of Nordhaus (2008) but is numerically easier to handle, especially under

uncertainty.

Everybody works. In period t, the labor force Lt together with the capi-

tal stock Kt generate GDP Yt through a Cobb-Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1),
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where At represents technological efficiency and γ is the elasticity of capital.

Capital is accumulated through

Kt+1 = (1− δ)Kt + It (0 < δ < 1),

where It denotes investment and δ is the depreciation rate of capital. Pro-

duction generates carbon dioxide (CO2) emissions Et:

Et = σt(1− μt)Yt,

where σt denotes the emissions-to-output ratio for CO2, and μt is the abate-

ment fraction for CO2. The associated CO2 concentration Mt accumulates

through

Mt+1 = (1− φ)Mt + Et (0 < φ < 1),

where φ is the depreciation rate of CO2 (rate of removal from the atmo-

sphere). Temperature Ht develops according to

Ht+1 = η0 + η1Ht + η2 log(Mt+1) (η1 > 0, η2 > 0).

In each period t, the fraction of GDP not spent on abatement or ‘damage’

is either consumed (Ct) or invested (It) along the budget constraint

(1− ωt)DtYt = Ct + It. (3)

The damage function Dt depends only on temperature and satisfies 0 <

Dt ≤ 1, where Dt = 1 represents the optimal temperature for the economy.

Deviations from the optimal temperature cause damage. We specify Dt as

Dt =
1

1 + ξH2
t

(ξ > 0).

For very high and very low temperatures Dt approaches zero. The optimal

value Dt = 1 occurs at Ht = 0, the temperature in 1900, as in Nordhaus.

A fraction ωt of DtYt is spent on abatement, and we specify the abatement

cost fraction as

ωt = ψtμ
θ
t (θ > 1).

When μt increases then so does ωt, and a larger fraction of GDP will be

spent on abatement. As in Nordhaus (2008) one period is ten years. We
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choose the exogenous variables such that Lt > 0, At > 0, σt > 0, and

0 < ψt < 1. The policy variables must satisfy

Ct ≥ 0, It ≥ 0, 0 ≤ μt ≤ 1. (4)

In Appendix A we prove that μ1 ≥ 0 and C1 ≥ 0 are automatically satisfied.

The other restrictions need to be imposed. Then, all variables will have the

correct signs and all fractions will lie between zero and one.

Given a utility function U we define welfare in period t as

Wt = LtU(Ct/Lt).

If the policy maker has an infinite horizon, then he/she will maximize total

discounted welfare,

W =

∞∑
t=0

Wt

(1 + ρ)t
(0 < ρ < 1),

where ρ denotes the discount rate. Letting x denote per capita consumption,

the utility function U(x) is assumed to be defined and strictly concave for

all x > 0. There are many such functions, but a popular choice is

U(x) =
x1−α − 1

1− α
(α > 0), (5)

where α denotes the elasticity of marginal utility of consumption. This is

the so-called power function. Many authors, including Nordhaus (2008),

select this function and choose α = 2 in which case U(x) = 1 − 1/x. Also

popular is α = 1; see Kelly and Kolstad (1999) and Stern (2007).

Table 1: Comparison of stocks in Nordhaus (DICE) and our (SICE) models

2005 2055 2105 2155

DICE SICE DICE SICE DICE SICE DICE SICE

K 137 137 353 354 707 711 1317 1324

M 809 809 1048 988 1270 1233 1428 1430

H 0.7 0.7 1.8 1.5 2.7 2.4 3.3 3.2

Calibrating the parameters and initial values (presented in our back-

ground document, see Ikefuji et al., 2013b), our simple model3 (hereafter,

3GAMS code available at http://www.janmagnus.nl/items/risk.pdf
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SICE = simplified DICE) produces optimal values over sixty periods that

are very close to the values obtained in Nordhaus, as shown in Table 1.

3.2 Stochasticity

We now introduce simple uncertainty in the SICE model, in the spirit of

Weitzman (2009), thus obtaining a stylized stochastic integrated assessment

model of climate economics. There is much uncertainty in the economics

of climate change (Manne and Richels, 1992; Nordhaus, 1994; Roughgarden

and Schneider, 1999; Kelly and Kolstad, 1999; Keller et al., 2004; Mas-

trandrea and Schneider, 2004; Leach, 2007; Weitzman, 2009, Ackerman et

al., 2010). We model uncertainty through stochasticity. In the literature,

stochasticity is typically introduced through the damage function (see, for

example, Cai, Judd and Lontzek, 2012). We follow this literature by intro-

ducing stochasticity through Equation (3), which we now write as

ftYt = Ct + It, (6)

where ft depends not only on ωt and Ht (as in (3)), but also on a random

shock εt. In particular, we specify

ft = (1− ωt)d̄tDt, d̄t = e−τ2/2 eτεt, (7)

where εt denotes a random error with mean zero and variance one.

This specification should be interpreted as the reduced form resulting

from various types of uncertainty, in particular damage and mitigation un-

certainty. The potential damage due to adverse climate change is one com-

ponent of the aggregate stochasticity affecting the economy, as in Weitzman

(2009), and all stochasticity is dictated by the probability law of ε, which

plays the role of logC in the reduced-form of Weitzman. We emphasize

that extreme climate change is just one example of a catastrophe. Another

example would be a financial crisis, where we could take ft to depend on

policy, financial institution, and risk.

If εt follows a normal distribution N(0, 1), then the moments of d̄t exist,

and we have E(d̄t) = 1 and var(d̄t) = eτ
2 − 1. Since the distribution of d̄t is

heavily skewed, more uncertainty (higher τ) implies more probability mass
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of d̄t close to zero. If, however, we move only one step away from the nor-

mal distribution and assume e.g., that εt follows a Student distribution with

any (finite) degrees of freedom, then the expectation is infinite (Geweke,

2001). This fact predicts that expected welfare may be very sensitive to

distributional assumptions: random noise with finite moments (Student dis-

tribution) may turn into random variables without moments (d̄t, d̄tYt).

3.3 A two-period model

So far we have assumed an infinite horizon. We now specialize to two pe-

riods, as in Weitzman (2009). The two-period model captures the essence

of our problem while remaining numerically tractable in the presence of

uncertainty.

If the policy maker has a (finite) T -period policy horizon, then we write

welfare as

W =
T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

1

(1 + ρ)T

∞∑
t=0

LT+tU(xT+t)

(1 + ρ)t
,

where xt = Ct/Lt denotes per capita consumption in period t. If {x∗t }
denotes the optimal path for {xt}, then we define the scrap value as

ST =

∞∑
t=0

LT+tU(x∗T+t)

(1 + ρ)t
.

Maximizing W is then equivalent to maximizing

T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

ST
(1 + ρ)T

.

The scrap value ST will depend on the state variables at time T , in particular

KT and MT , and this functional relationship is the scrap value function:

ST = S(KT ,MT ). If T is large we may ignore the scrap value ST because

of the large discount factor (1 + ρ)T . But if T is small, then we need to

model ST explicitly, thus emphasizing the fact that the policy maker has

the double objective of maximizing discounted welfare over a finite number

of periods T , while also leaving a reasonable economy for the next policy

maker, based on the remaining capital stock and CO2 concentration. The
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simplest approximation to ST is the linear function

ST = ν0 + ν1KT − ν2MT (ν1 > 0, ν2 > 0), (8)

where ν1 and ν2 denote the scrap prices of capital and pollution at the

beginning of period T . This scrap value function captures the idea that the

next government will be happier if there is more capital and less pollution

at the beginning of its policy period. But the linear scrap value function

has some problems; see our background document Ikefuji et al. (2013b).

We shall therefore introduce nonlinear scrap value functions, whose specific

form depends on the form of the utility function; see Ikefuji et al. (2013b)

for further details on our treatment of scrap value functions.

The simplest version of the model occurs when T = 2 in which case we

have only two periods. We can write welfare in this case as

W =W (μ0, C0, μ1, C1, ε1) =W0 +
W1

1 + ρ
+

S2
(1 + ρ)2

.

The policy restrictions (4) are explicitly imposed, so that we maximize a

restriction of expected welfare; see Appendix A. Randomness results from

d̄1 only, because d̄0 at the beginning of period 0 is known to us (we set

d̄0 = 1, equal to its expectation), and d̄2 at the end of period 1 does not

appear in the welfare function. Hence, the only source of randomness is

caused by the error ε1. The policy maker has to choose the policy bundles

(C0, I0, μ0) at the beginning of period 0 and (C1, I1, μ1) at the beginning of

period 1 that will maximize expected welfare.

Realizing that d̄1 at the beginning of period 1 is observed based on the

realization of ε1, the policy maker will maximize expected welfare in three

steps as follows. First, he/she maximizes welfare W =W (μ0, C0, μ1, C1, ε1)

with respect to (μ1, C1) conditional on (μ0, C0, ε1) and under the restriction

(4). This gives (μ∗1, C∗
1 ) and concentrated welfare

W ∗(μ0, C0, ε1) =W (μ0, C0, μ
∗
1, C

∗
1 , ε1).

Then the expectation W (μ0, C0) = E (W ∗(μ0, C0, ε1)) is computed, if it

exists. Finally, W is maximized with respect to (μ0, C0).
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4 Compatibility and solution

We now have a simplified Nordhaus model with Weitzman-type stochastic-

ity in a two-period framework. We illustrate our theoretical compatibility

results in this stylized economy-climate model with catastrophic risk.

4.1 Compatibility results

In this model, we consider three utility functions (power, exponential, Pareto)

and two distributions (normal, Student). Power utility, as given in (5), takes

the simple form U(x) = 1− 1/x for α = 2. The following proposition states

that if the random errors εt are generated by a normal N(0, 1) distribution,

then the expectation of welfare exists for power utility, but if we move one

step away from normality and assume a Student distribution with any finite

degrees of freedom, then the expectation does not exist. It illustrates the

consequences of violating the conditions of Proposition 2.1.

Proposition 4.1 With power utility, expected welfare exists under normal-

ity of ε but not under a Student distribution.

It follows that the much-used power utility function is incompatible with

expected utility theory with heavy tails, not because utility theory itself is

at fault but because power utility is inappropriate when tails are heavy.

Motivated by the conditions derived in Section 2 and by the funda-

mental insight that the economic model and the statistical model must be

compatible, and also because we wish to leave distributional assumptions

unrestricted at this stage, we consider two alternative utility functions: the

exponential function and the Pareto function. Other choices are permitted

but may require restrictions on distributional assumptions. The exponential

utility function is given by

U(x) = 1− e−βx (β > 0) (9)

with ARA(x) = β and RRA(x) = βx, and the Pareto utility function by

U(x) = 1−
(

λ

x+ λ

)k

(k > 0, λ > 0) (10)
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with ARA(x) = (k+1)/(x+λ) and RRA(x) = (k+1)x/(x+λ). The Pareto

function was proposed in Ikefuji et al. (2013a), where it is shown that this

function enjoys a combination of appealing properties especially relevant in

heavy-tailed risk analysis. We choose the parameters as follows: β = 25 in

the exponential function, and k = 1.5 and λ = 0.02 in the Pareto function.

This choice of parameters is determined by the point x∗, where we want

the three utility functions to be close. Suppose we want the functions to be

close at x∗ = 0.08 (which is approximately the value of C0/L0 and C1/L1

considered below). Then, given that α = 2, we find β = 2/x∗ = 25, and, for

any k > 1, λ = (k − 1)x∗/2.

The power function is unbounded, hence violates the conditions of Propo-

sition 2.1, and has constant and positive RRA, hence violates the condi-

tions of Proposition 2.3. Both the exponential and the Pareto function are

bounded from above and below, hence satisfy the conditions of Proposition

2.1. The exponential function has constant and positive ARA, hence satis-

fies the conditions of Proposition 2.3, while the RRA is unbounded for large

x. In contrast, the RRA in the Pareto function is bounded between 0 and

k+1, and it further satisfies RRA(0) = 0 and ARA(0) <∞, hence satisfies

the conditions of Proposition 2.3. Notice that the fact that RRA(0) = 0

(as is the case for the exponential and the Pareto utility functions) does not

imply that the representative agent is risk-neutral at x = 0. In particular,

we have ARA(0) = β for the exponential function and ARA(0) = (k+1)/λ

for the Pareto function.

4.2 Numerical solution

In Table 2 we present the optimal values of the policy and other selected

variables obtained from maximizing expected welfare. (Our background

document contains the complete tables.) The results allow for uncertainty,

consider the short run (two periods) rather than the long run (sixty periods),

and also take scrap values into account.

We need values for the exogenous variables Lt, At, σt, and ψt; these

are given in our background document. We note that Y0 = 556.67 and

d0 = 0.9985 are constant over different scenarios and functions, and that
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the values of μ0, C0, I0, E0, ω0, K1, M1, and H1 are optimal values. In

contrast, μ1, C1, I1, Y1, E1, ω1, d1, K2, M2, and H2 are optimal functions

of ε1. What we present in the tables are their expectations.

We also need sensible values for the uncertainty parameter τ . The

stochasticity, as given in (7), captures uncertainty about GDP that is due in

part to uncertainty about climate economics. Historical variation in GDP

may therefore serve as an initial upper bound proxy for τ . Barro (2009) cal-

ibrates the standard deviation of log GDP to a value of 0.02 on an annual

basis. Over a 10-year horizon this would correspond to about 0.06, under

normality. Barro, however, only considers rich (OECD) countries, which

means that for our purposes this value needs to be scaled up. In addition to

the value of τ we need to consider the question whether or not the uncer-

tainty introduced is indeed heavy-tailed. A (partial) answer to this question

is contained in a recent paper by Ursúa (2010) who claims that the growth

rate of GDP indeed features heavy tails. In Figure 1 we plot the density
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Figure 1: Density of d̄t for τ = 0.1, 0.3, and 0.7

of d̄t for three values of τ : 0.1, 0.3, and 0.7, both when εt follows a N(0, 1)

distribution (solid line) and when εt =
√

4/5u, where u follows a Student

distribution (as adopted in Weitzman, 2009) with 10 degrees of freedom

(which implies a ‘tail index’ that is broadly consistent with the empirical

analysis in Ursúa, 2010). Notice that E(εt) = 0 and var(εt) = 1 in both

cases. When τ = 0.1, we see that almost 100% of the distribution of d̄t lies

in the interval (0.5, 2.0), both for the N(0, 1) distribution and for the t(10)
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distribution. When τ = 0.3, 97.8% (97.2% for the Student distribution) lies

in the interval (0.5, 2.0); and, when τ = 0.7, only 64.9% (67.2% for the Stu-

dent distribution) lies in this interval. We conclude that τ = 0.7 may serve

as a credible upper bound for the uncertainty range, and hence we report

our results for τ = 0.0, 0.3, 0.5, and 0.7.

4.3 Light tails

The first panel of Table 2 gives the results for power utility. For τ = 0 there

is no uncertainty, but for τ > 0 there is uncertainty, and the larger is τ

the higher is the uncertainty. The increase in I0 with τ can be explained

by precautionary savings. The restriction on I1 (cf. (4)) can be viewed as

a penalty for negative investment. To avoid this penalty, the policy maker

can increase the budget in period 1 by investing more in period 0 at the

expense of less abatement and consumption in period 0. The decrease in μ0

leads to higher emissions in period 0, and increases carbon concentration and

temperature in period 1. An additional reason why investment in period 1

increases with uncertainty is that positive shocks translate into possibly

unlimited upward shocks in I1, but negative shocks will never cause I1 to

drop below zero.

Turning now to the alternative utility functions, we first maximize (de-

terministic, hence τ = 0) welfare over sixty periods (600 years) for both

exponential and Pareto utility. A selection of the resulting optimal values is

shown in Table 3. When we compare the results with those in Table 1, we

Table 3: Comparison of stocks in Exponential and Pareto models

2005 2055 2105 2155

Expo Pareto Expo Pareto Expo Pareto Expo Pareto

K 137 137 286 343 388 666 456 1220

M 809 809 1012 993 1328 1258 1727 1512

H 0.7 0.7 1.6 1.5 2.6 2.5 3.7 3.3

see that the optimal stock values from the Pareto function closely resemble

the optimal stock values from the power function, but not those from the

exponential function. In contrast to power and Pareto, where RRA flattens
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out, the RRA for the exponential distribution continues to increase, and

hence the growth rate of marginal utility continues to increase as well. As

x increases, consumption will therefore increase, and investment and abate-

ment will decrease. Consequently, M and H are high compared to power

and Pareto. When x < x∗, RRA (Pareto) is close to RRA (exponential), so

that more is consumed and less invested when the Pareto function is used

instead of the power function. But when x > x∗, RRA (Pareto) is close

to RRA (power). The optimal path of K is slightly lower and the optimal

paths of M and H are slightly higher for Pareto than for power utility.

Since exponential utility is calibrated to be close to power utility at

x = x∗, the two-period results for the two utility functions do not differ

greatly; see the second panel of Table 2. As the uncertainty parameter

τ increases, M2 does not change much in the exponential case, while it

increases in the power case. The effect of uncertainty on the marginal scrap

values is therefore larger in the exponential case than in the power case.

4.4 Heavy tails

Suppose next that the underlying distribution has heavier tails: Student

instead of normal. Under power utility, expected welfare does not exist any

more. But under bounded utility, expected welfare always exists. Although

the effect of the excess kurtosis on expected welfare is large and discontin-

uous, the effect on the optimal values is relatively small in the center of

the distribution. This is good, because the Student distribution with 10 de-

grees of freedom is in fact quite close to the normal distribution as Figure 1

reveals, and hence it would be unreasonable if a ‘small’ change in distribu-

tional assumptions would lead to a large possibly ‘discontinuous’ change in

optimal policies.

All variables move in the same direction as before when τ increases.

Notice that some variables (C1, I1, and K2) have infinite expectations even

though expected welfare is finite. This is no surprise because these variables

are unbounded and depend on d̄1 = e−τ2/2eτε1 . When ε1 follows a Student

distribution, E(d̄1) = ∞ and this property carries over to the other three

variables.
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We would expect that Pareto and power are relatively close in the ob-

served data range. This is indeed the case as a comparison of the first and

third panels reveals. There is little difference between the two panels in

the case of no uncertainty, and also when τ increases. The effect of excess

kurtosis is again small, as it should be.

In the observed data range, that is in the center of the distribution, the

three utility functions (power, exponential, Pareto) yield similar optimal

policy values. Apparently the center of the distribution is quite robust with

respect to the specification of the utility function and the error distribution.

This is important, because discontinuities occur caused by the non-existence

of moments. These discontinuities, however, do not cause large shocks in the

center of the distribution. The small difference between power, exponential,

and Pareto utility on the one hand, and the normal and Student distribution

on the other within the observed data range does not mean that the choice

between them does not matter in practice. The important differences be-

tween them are revealed when low levels of per capita consumption become

relevant, that is, in near-catastrophe cases.

4.5 Near-catastrophe

To study near-catastrophe we must define what we mean by a catastrophic

event. We propose to define catastrophe as the event C∗
1 ≤ C for some given

value C > 0. The probability of catastrophe is then given by π = Pr(C∗
1 ≤

C). We shall consider three different values of C: Ca, Cb, and Cc, corre-

sponding to three levels of catastrophe, labeled A, B, and C. Catastrophe A

occurs when 20% of the world population live in extreme poverty, and catas-

trophes B and C occur when 50% and 80% of the world population live in

extreme poverty, respectively. These definitions are based on background

material provided in Ikefuji et al. (2013b).

The last line in Table 2 gives the estimated values of πb, the probability

of type-B catastrophe. If we compare the probabilities of catastrophe of the

power and exponential distribution for the normal distribution with τ = 0.3,

they differ by approximately a factor of 100. For exponential utility, moving

from a normal distribution to a t(10) distribution with τ = 0.3 increases the
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probability of catastrophe by a factor of almost 1300. For Pareto utility,

moving from a normal to a t(10) distribution changes the probability of

catastrophe even by a factor of 43000. We conclude that results at the

mean are similar across models, which is in part a consequence of the manner

in which the models are calibrated. But the large differences between the

models, both in terms of distributional assumptions (normal versus Student)

and in terms of utility function (power, exponential, Pareto), become clear

once we consider the tails of the distribution.

Table 4: Pareto utility and Student distribution
Robustness

a b c d e f g

Parameter values

τ 0.3 0.3 0.5 0.3 0.5 0.7 0.5

df 10 25 10 10 25 10 10

k 1.5 1.5 1.5 2.0 1.5 1.5 2.0

Policy instruments, beginning of period 0

μ0 0.0910 0.0910 0.0888 0.1192 0.0887 0.0861 0.1163

C0 424.33 424.31 413.71 438.01 413.50 400.67 427.56

I0 131.46 131.47 142.08 117.73 142.29 155.12 128.19

Capital stock and expectations

K1 179.23 179.25 189.86 165.50 190.06 202.89 175.96

μ1 0.1135 0.1135 0.1154 0.1604 0.1154 0.1175 0.1655

H2 1.0413 1.0413 1.0429 1.0309 1.0430 1.0449 1.0323

Probabilities of catastrophe π�

πa 5.0E−03 3.3E−03 5.2E−02 5.1E−03 5.3E−02 1.4E−01 5.2E−02

πb 2.3E−05 5.9E−07 1.4E−03 2.6E−05 5.5E−04 1.2E−02 1.5E−03

πc 2.5E−07 5.0E−11 2.8E−05 2.6E−07 8.2E−07 4.9E−04 3.0E−05

4.6 Robustness

To assess the sensitivity of the optimal policy to parameter changes, we

have done extensive robustness checks and some representative results of this

analysis are reported in columns a–g of Table 4, see Ikefuji et al. (2013b)

for further results.

Let us take column c, with intermediate τ = 0.5, as our benchmark. If

we adjust the degrees of freedom (column e), then not much happens. There
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is little to choose between columns c and e. The optimal policy (μ∗0, C∗
0 , I

∗
0 )

is hardly affected, which is a good thing, because it means that our policy

is not too sensitive to changes in the heaviness of the tail (degrees of free-

dom), a finding that is consistent with Chichilnisky (2000). In columns a,

f we consider τ = 0.3, 0.7. Here the probabilities of catastrophe become

significantly smaller, larger. For example, we have πc = 0.0005 in column

f as opposed to πc = 0.00003 in column c. The choice of volatility τ does

affect the policy, and hence is important; cf. also columns b, d. In column g

we adjust the curvature of the Pareto utility function. The probabilities are

hardly affected but there will be more consumption, less investment, and in

particular more (perhaps too much) abatement; cf. also column d. On the

basis of these and other robustness checks we conclude that policy c is quite

robust and sensibly sensitive to small changes in the underlying assumptions

and parameter values.

5 Concluding remarks

We have derived necessary and sufficient conditions in the EU model to avoid

fragility of the model to distributional assumptions in a cost-benefit analy-

sis. We have applied these conditions to economy-climate catastrophe. Our

strategy in this application has been to specify a stylized stochastic economy-

climate model, building on Nordhaus’ deterministic economy-climate model

while allowing for simple stochasticity in the spirit of Weitzman. Under

expected power utility, the model is shown to be fragile to distributional

assumptions. Based on our generic results regarding the relationship be-

tween the richness of the class of utility functions and the generality of the

permitted distributional assumptions, we have restricted ourselves to utility

functions that are compatible with our distributional assumptions. Thus we

guarantee a valid axiomatization of EU and avoid the unacceptable conclu-

sion that society should sacrifice an unlimited amount of consumption to

reduce the probability of an economy-climate catastrophe by even a small

amount.

Much of the analysis in our paper is not limited to economy-climate

catastrophe. Similar analyses could apply in other policy making settings
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involving catastrophic risks, such as the development of new financial incen-

tive schemes to mitigate the risk of extreme systemic failures and resulting

financial economic crises, or policies concerning medical risks (pandemic flu

and vaccination risks).

Let us finally admit four limitations of our paper, the application in

particular, and indicate possible generalizations. First, in Section 4.1 we

have focussed our attention on bounded utility functions, so as to avoid

having to restrict distributional assumptions. In general, one could assume

more structure on stochasticity (yet still allow for heavy tails) and broaden

the constraints on utility. Second, for simplicity and clarity of presentation,

we have restricted our numerical analysis to only two periods. Conceptually,

much of our analysis will remain intact when considering more than two

periods, and, as such, it would be interesting to evaluate the alternative

utility functions in the multi-short-period stochastic model of Cai, Judd,

and Lontzek (2012). Third, to account for the fact that the policy maker

has the double objective of maximizing current consumption, while also

leaving a reasonable economy for the next policy maker, we have used scrap

values in our analysis. We ignore, however, stochasticity in the scrap value

function after the second period. The development of a numerically tractable

economy-climate model with multi-period stochasticity and stochasticity in

scrap values after the last period is a subject for further research. Finally, the

equations making up our stochastic economy-climate model are of a simple

and stylized nature, and each one of them, including the specification of

stochasticity, leaves room for generalizations and extensions.

Appendices

A Kuhn-Tucker conditions

Consider the economy-climate model of Section 3.1 in a two-period set-up.

Let U be a general well-behaved utility function and let S(1) and S(2) be

general well-behaved scrap value functions. At the beginning of period 1

our welfare function, conditional on (C0, μ0, ε1), is

W = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2).
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We have four constraints: C1 ≥ 0, I1 ≥ 0, μ1 ≥ 0, and μ1 ≤ 1, but only two

of these can be binding as we shall see. Hence, we define the Lagrangian

L = L(C1, μ1) as

L = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2) + κ1I1 + κ2(1− μ1),

and we find
∂L
∂C1

= U ′(C1/L1)− (ν1g1 + κ1)

and
∂L
∂μ1

=
(
−(ν1g1 + κ1)ψ1θμ

θ−1
1 d1 + ν2g2σ1

)
Y1 − κ2,

where

g1 = g1(C1, μ1) =
∂S(1)(K2)

∂K2
, g2 = g2(μ1) =

∂S(2)(M2)

∂M2
.

This leads to the Kuhn-Tucker conditions:

κ1 = U ′(C1/L1)− ν1g1 ≥ 0,

I1 = (1− ψ1μ
θ
1)d1Y1 − C1 ≥ 0,

and

κ2 =
(
−U ′(C1/L1)ψ1θμ

θ−1
1 d1 + ν2g2σ1

)
Y1 ≥ 0,

μ1 ≤ 1,

together with the slackness conditions κ1I1 = 0 and κ2(1− μ1) = 0.

Under the assumption that I1 > 0 we have κ1 = 0 and we distinguish

between two cases, as follows.

Case (1): κ2 > 0. We have μ1 = 1 and g2 = g2(1), and we solve two

equations in two unknowns:

U ′(C1/L1) = ν1g1, g1 = g1(C1, 1),

under the restrictions:

C1

(1− ψ1)Y1
≤ d1 <

ν2g2σ1
ν1g1ψ1θ

.
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Case (2): κ2 = 0. We solve four equations in four unknowns:

U ′(C1/L1) = ν1g1, μθ−1
1 d1 =

ν2g2σ1
ν1g1ψ1θ

,

g1 = g1(C1, μ1), g2 = g2(μ1),

under the restrictions:

C1 ≤ (1− ψ1μ
θ
1)d1Y1, μ1 ≤ 1.

The following two points are worth noting. First, we see that the restrictions

μ1 ≥ 0 and C1 ≥ 0 are automatically satisfied, so that they do not need to

be imposed. Second, we see that U ′(C1/L1) = ν1g1 in both cases. This fact

will be used in the proof of Proposition 4.1.

B Proofs of the propositions

Proof of Proposition 2.1: See Menger (1934, p. 468) in the context of St.

Petersburg-type lotteries, and also Arrow (1974, p. 136) and Gilboa (2009,

pp. 108-109). Menger (implicitly) assumes boundedness from below and

demonstrates that boundedness from above should hold, and it is straight-

forward to generalize his result to an a priori unrestricted setting.

Proof of Proposition 2.2: Let α∗ > 0. The EU maximizer is then more

risk-averse in the sense of Arrow-Pratt than an agent with power (CRRA)

utility of index α∗. It follows from (2) that

P ′(C∗
1 )

P (C∗
1 )

=
U ′′(C∗

1 )

U ′(C∗
1 )

= −ARA(C∗
1 ).

Since ARA(x) = RRA(x)/x ≥ α∗/x, we then have

E(P ) =
1

1 + ρ
Eexp

(
−
∫ 1

C∗
1

d log P (x)

)
=

1

1 + ρ
Eexp

(∫ 1

C∗
1

ARA(x) dx

)

≥ 1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

(α∗/x) dx

)
dF (ε1)

=
1

1 + ρ

∫
C∗

1≤1
(C∗

1 )
−α∗

dF (ε1) ≥ B−α∗

1 + ρ

∫
C∗

1≤1
e−Aα∗ε1 dF (ε1) = ∞,

27



using (1) and the fact that ε1 is heavy-tailed to the left. This proves part (a).

Intuitively, if agent 1 is more risk-averse in the sense of Arrow-Pratt than

agent 2, and if it is optimal to postpone all consumption for agent 2, then

this will also be optimal for agent 1.

Next let α∗ = 0 and β∗ <∞. The EU maximizer is then less risk-averse

in the sense of Arrow-Pratt than an agent with exponential (CARA) utility

of index β∗. Since α∗ = 0, we have 0 ≤ ARA(x) ≤ β∗ and hence

E(P ) =

∫
C∗

1≤1
P dF (ε1) +

∫
C∗

1>1
P dF (ε1)

≤ 1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

β∗ dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1
exp

(
−
∫ C∗

1

1
ARA(x) dx

)
dF (ε1)

≤ eβ
∗
Pr(C∗

1 ≤ 1) + Pr(C∗
1 > 1)

1 + ρ
<∞.

Proof of Proposition 2.3: To prove the ‘only if’ part, we assume that∫ γ
0 ARA(x) dx is infinite for every γ > 0, and then show that there exist

(S,A,P) and ε1 defined on it such that E(P ) = ∞. We note that β∗ = ∞.

Define a function g : (0, 1] → [1,∞) by

g(y) = exp

(∫ 1

y
ARA(x) dx

)
.

Then,

E(P ) ≥ 1

1 + ρ

∫
C∗

1≤1
g(min(C∗

1 , 1)) dF (ε1).

Recall from (1) that C∗
1 ≤ BeAε1 , and let ε∗1 be such that BeAε∗1 = 1, so that

0 < BeAε1 ≤ 1 if and only if ε1 ≤ ε∗1. Define u : (−∞,∞) → [0,∞) by

u(ε1) =

⎧⎨
⎩g(Be

Aε1)− 1 if ε1 ≤ ε∗1,

0 if ε1 > ε∗1.

Since ARA(1) > 0, g is monotonically decreasing and we obtain∫
C∗

1≤1
g(min(C∗

1 , 1)) dF (ε1) ≥
∫
ε1≤ε∗1

g(BeAε1) dF (ε1)

=

∫
ε1≤ε∗1

(u+ 1) dF (ε1) = E(u) + Pr(ε1 ≤ ε∗1).
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Strict monotonicity of g implies its invertibility. Hence we can choose u to

be any non-negative random variable whose expectation does not exist (for

example, the absolute value of a Cauchy distribution), and then define ε1

through B1e
τε1 = g−1(u+ 1). With such a choice of ε1 we have E(P ) = ∞.

To prove the ‘if’-part we assume that
∫ γ
0 ARA(x) dx is finite. This im-

plies that
∫ 1
0 ARA(x) dx is finite, so that

E(P ) =
1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

ARA(x) dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1
exp

(
−
∫ C∗

1

1
ARA(x) dx

)
dF (ε1)

≤ Pr(C∗
1 ≤ 1)

1 + ρ
exp

(∫ 1

0
ARA(x) dx

)
+

Pr(C∗
1 > 1)

1 + ρ
<∞,

using the fact that α∗ = RRA(0) = 0.

Proof of Proposition 4.1: We shall prove the proposition both for the

linear scrap and the non-linear scrap case. In both cases the inequality

constraints (4) are imposed. Since

d1Y1 = B1e
τε1 , B1 =

e−τ2/2Y1
1 + ξH2

1

,

we obtain

C∗
1 ≤ C∗

1 + I∗1 = (1− ω∗
1)d1Y1 ≤ B1e

τε1 , (11)

I∗1 ≤ C∗
1 + I∗1 ≤ B1e

τε1 ,

(1− δ)K1 ≤ K∗
2 ≤ (1− δ)K1 +B1e

τε1 ,

and

M∗
2 ≤ (1− φ)M1 + σ1Y1.

We distinguish between three cases.

Linear scrap under normality. Linear scrap implies that S(1)(K2) = K2

and S(2)(M2) = M2. Since E(eτε1) exists under normality, it follows that

C∗
1 , I

∗
1 , K

∗
2 , and M

∗
2 all have finite expectations, and therefore that E(W ∗)

exists if and only E(1/C∗
1 ) exists. For notational convenience we do not
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distinguish between the random variable ε1 and its realization. With this

slight abuse of notation, we write

E(1/C∗
1 ) =

∫ ∞

−∞
(1/C∗

1 ) dF (ε1) =

∫
I∗1=0

(1/C∗
1 ) dF (ε1) +

∫
I∗1>0

(1/C∗
1 ) dF (ε1)

= (1/B1)

∫
I∗1=0

e−τε1

1− ω∗
1

dF (ε1) +

∫
I∗1>0

(1/C∗
1 ) dF (ε1)

≤ 1

(1− ψ1)B1
E(e−τε1) +

∫
I∗1>0

(1/C∗
1 ) dF (ε1).

Since E(e−τε1) is finite, it suffices to show that
∫
I∗1>0(1/C

∗
1 ) dF (ε1) is finite.

Now, it follows from Appendix A that, under the assumption that I∗1 > 0,

U ′(C∗
1/L1) = L2

1/C
∗
1
2 = ν1g

∗
1 = ν1, because g

∗
1 = 1. Hence,

∫
I∗1>0

(1/C∗
1 ) dF (ε1) =

ν
1/2
1

L1
Pr(I∗1 > 0) ≤ ν

1/2
1

L1
<∞.

Nonlinear scrap under normality. Nonlinear scrap implies that

S(1)(K2) = −K0

p

(
K2

K0

)−p

, S(2)(M2) =
M0

q

(
M2

M0

)q

where p > 0 and q > 1. Since

(K∗
2 )

−p ≤ ((1− δ)K1)
−p

and

(M∗
2 )

q ≤ ((1− φ)M1 + σ1Y1)
q ,

we see that E(W ∗) exists if and only E(1/C∗
1 ) exists. As in the linear scrap

case, it suffices to show that
∫
I∗1>0(1/C

∗
1 ) dF (ε1) is finite. Since

g1 = g1(K2) =
∂S(1)(K2)

∂K2
=

(
K0

K2

)p+1

,

it follows from Appendix A that, under the assumption that I∗1 > 0,

U ′(C∗
1/L1) = L2

1/C
∗
1
2 = ν1g

∗
1 = ν1

(
K0

K∗
2

)p+1

≤ ν1

(
K0

(1− δ)K1

)p+1

,

and hence that∫
I∗1>0

(1/C∗
1 ) dF (ε1) ≤

ν
1/2
1

L1

(
K0

(1− δ)K1

)(p+1)/2

<∞.
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Student distribution. From (11) we have 1/C∗
1 ≥ e−τε1/B1. Under a Student

distribution, the right-hand side has no finite expectation, and hence the

left-hand side has no finite expectation either. In the non-linear scrap case,

this is sufficient to prove the non-existence of E(W ∗) because S(1)(K∗
2 ) and

S(2)(M∗
2 ) are both bounded. In the linear scrap case, M∗

2 is bounded, but

K∗
2 is not. Now, since

C∗
1 ≤ B1e

τε1 , K∗
2 ≤ (1− δ)K1 +B1e

τε1 ,

we obtain

L1(1−L1/C
∗
1 )+ν1K

∗
2 ≤ L1−(L2

1/B1) e
−τε1+ν1(1−δ)K1+ν1B1e

τε1 ≡ G(ε1).

Since G is monotonically increasing from −∞ to +∞, there exists a unique

ε∗1 defined by G(ε∗1) = 0. Hence, G(ε1) ≤ 0 for all ε1 ≤ ε∗1 and

E |(L1(1− L1/C
∗
1 ) + ν1K

∗
2 )| ≥

∫
ε1≤ε∗1

|G(ε1)| dF (ε1)

≥ −L1 − ν1(1− δ)K1 + (L2
1/B1)

∫
ε1≤ε∗1

e−τε1 dF (ε1)− ν1B1e
τε∗1 = ∞.
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