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In this paper we aim to establish intuitively appealing and verifiable conditions for the existence 
and weak consistency of ML estimators in a multi-parameter framework, assuming neither the 
independence nor the identical distribution of the observations. The paper has two parts. In the 
first part (Theorems 1 and 2) we assume that the joint density of the observations is known (except 
for the values of a finite number of parameters to be estimated), but we do not specify this 
distribution. In the second part (Theorems 3-6), we do specify the distribution and assume Joint 
normality (but not independence) of the observations. Some examples are also provided. 

1. Introduction 

There seems to be almost universal consensus among econometricians that 
the method of maximum likelihood (ML) yields estimators which, under mild 
assumptions, are consistent. The purpose of this paper is to show that this 
unanimity is largely justified, but on grounds which are not quite so trivial as 
generally assumed. 

To a large extent, the root of the problem is that the observations in 
econometric models are, as a rule, not independent and identically distributed 
(i.i.d.). Consider for example the familiar linear model 

yt = xg + E I, t=l,...,n. 
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Society at Pisa. the 1985 World Congress at M.I.T., and at workshops at LSE, INSEE, Dortmund, 
and Sydney. We are grateful to participants of these workshops for their helpful comments. We 
are particularly grateful to Professor B.B. van der Genugten, Peter Robinson and the referee for 
their positive and useful criticisms. Magnus’ research was supported, in part, by a grant from the 
Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 
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Even if the errors (et, f = 1,. . . , n) are i.i.d., the observations y, are not (their 
expected values differ), unless the vectors (x,, t = 1,. . . , n) are random and 
i.i.d., or x, = c, a vector of constants. When the observations yI are not 
identically distributed, they may still be independent. In many econometric 
models, however, it is too restrictive to assume that fi, the covariance matrix 
of the errors, is diagonal, in which case the observations are neither indepen- 
dent nor identically distributed.’ 

One may argue that a simple transformation of the errors (with G-‘/* for 
example) will produce new errors which are then i.i.d. The problem with this 
approach is that if D depends on unknown parameters (like a* and p in the 
case of first-order autocorrelation), the transformed observations will then 
become functions of the unknown parameters, and no gain will be achieved. 

Unfortunately, only a small proportion of the literature on consistent ML 
estimation is concerned with generally dependent observations. Both Cramer 
(1946, pp. 500-504) and Wald (1949) confine their discussion to the i.i.d. case, 
and although Wald remarks (p. 600) that his method of proof can be extended 
to cover ‘certain types of dependent chance variables for which the strong law 
of large numbers remains valid’, Silvey (1961, p. 445) replies that this is no 
doubt true, but that ‘the mathematical problem of finding proper hypotheses 

to impose seems to be very deep’. 
Virtually all attempts to establish conditions under which the ML estimator, 

whether obtained from generally dependent or from i.i.d. observations, is 
consistent are based either on Cramer’s or on Wald’s approach. Cramer 
assumes inter alia that the loglikelihood is three times differentiable, and that 
the absolute value of the third derivative is bounded by some function with 
finite expectation. He then shows the consistency of some root of the likeli- 
hood equation, but not necessarily that of the ML estimator when the 
likelihood equation has several roots. Even a solution of the likelihood 

equation which makes the likelihood function an absolute maximum is not 
necessarily consistent, given Cramer’s assumptions.* Wald (1949), on the other 
hand, makes no differentiability assumptions. His approach, later perfected by 
Wolfowitz (1949), LeCam (1956) and Bahadur (1960,1967), is of great theoret- 
ical and practical importance, and is the one adopted here. 

Without attempting to survey the large literature on non-standard cases in 

which the observations are generally dependent, we mention Wald’s (1948) 
earlier paper, and papers by Bar-Shalom (1971) Weiss (1971,1973), Crowder 
(1976) and Basawa, Feigin and Heyde (1976) who emphasize the importance 

’ If D is non-diagonal, the observations are dependent but may still be ‘vector-independent’, 
e.g.. seemingly unrelated regressions: D = IO 1 or Q = E 8 I. The cases which motivate this 
study. of which first-order autocorrelation is a simple example, are less trivial. 

‘There is a huge literature on the relevance or irrelevance of the Cramer-Huzurbazar theory to 
ML estimation, or more generally to efficient estimation. Wald (1949) itself contains a brief 
discussion; Ferguson (1982) is a recent paper on the subject, with many references. 
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of martingale limit theory.3 All these papers are in the Cramer tradition. The 
alternative Wald (1949) approach was extended to stationary and ergodic 
Markov processes by Billingsley (1961) and Roussas (1965) and also adopted 
by Silvey (1961), Caines (1975) and Bhat (1979). In the time-series literature 
we mention in particular the important work by Hannan (e.g., his 1970 
monograph or his 1973 paper). The reader is also referred to interesting 
related work in the control literature. See, for example, Ljung (1978) and the 
references given there. More recent work, using mixing conditions, includes 
Bierens (1982), Domowitz and White (1982) White and Domowitz (1984) 
Bates and White (1985), and Wooldridge and White (1985). The important 
monographs by Hall and Heyde (1980) and Basawa and Scott (1983) also treat 
ML estimation in the general dependent case, generalizing Cramer’s theory of 
the optimality of consistent estimators (if any) which are roots of the likeli- 
hood equation. 

In this paper a further attempt is made to extend Wald’s result for the i.i.d. 
case to dependent observations. We believe that our conditions are weaker and 
more readily verifiable than usual. We avoid in particular the very strong and 
difficult to verify uniform convergence condition, which usually takes the 
following form. Let y be the parameter vector, and L,(y; y) the likelihood 
based on n observations y,, . . . , y, (= y). Assume that (a) the parameter space 
r is compact, (b) L,(y; y) is a continuous function of y for every y, (c) 
(l/n)log L,(y; y) converges in probability to a function Q(y) uniformly on 
r,4 and (d) this function Q(y) has a unique maximum at the true parameter 
point. We admit that under these conditions the ML estimator exists and is 
weakly consistent [this is easy to prove; see, e.g., Amemiya (1973, p. 1002) for 
the strong equivalent of this result], but to impose (c) and (d) is very 
restrictive, and to find suitable conditions which imply (c) and (d) difficult. 

Somewhat weaker than (c) would be the assumption that the sequence 

{(l/n)log J%(Y)] is equicontinuous in probability on r.5 In practice, the 
equicontinuity is often assumed of each of the conditional loglikelihoods or 
functions thereof, which again is very restrictive.6 

Our assumption B.4 in Theorem 2 (and the corresponding more specific 
conditions in Theorems 3-6) requires rather less. It stipulates something like 
‘local equicontinuity in probability’ of the normalized loglikelihood. The 

‘Bar-Shalom’s (1971) paper contains several errors as pointed out in Basawa, Feigin and Heyde 
(1976, p. 266). 

4Uniform convergence in probability means, in the present context, that 

pfim,, -m supYGrI(l/n)log L,(y) - Q(y)1 = 0. See Bierens (1981, p. 37). 

‘The concept of equicontinuity is defined and discussed in more detail in section 6. (See also 
footnote 15.) The fact that equicontinuity of a sequence of functions is a weaker condition than 
uniform convergence of that sequence, follows from theorem 2.23 of Rudin (1964, p. 144). 

‘See. e.g., Hoadley (1971, p. 1981), Domowitz and White (1982, theorem 2.2) and White and 
Domowitz (1984, theorem 2.3). 
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normalizing function is not n, but a quantity such as the absolute value of the 
Kullback-Leibler information which may depend on y. We shall discuss 
the implications of our conditions in more detail as we go along. 

There are two main parts to the paper. In the first part (sections 2-5) we 
present two theorems on the weak consistency of the ML estimator obtained 
from generally dependent observations. The first of these theorems contains 
conditions which are necessary as well as sufficient, while the conditions 
underlying Theorem 2 are somewhat stronger but more readily applicable, and 
provide the basis for the subsequent analysis. 

In the second part, which covers sections 6-11, our starting point is a set 

Y=(Y,,Y,,..., y,) of observations, not necessarily independent or identically 
distributed, whose joint distribution is known to be normal, 

where both the mean vector ~1 and the covariance matrix D may depend on an 
unknown vector of parameters yO to be estimated. This set-up, apart from the 
assumed unconditional normality, is rather wide since it contains not only the 
non-linear regression model with ‘fixed’ regressors, but also linear models with 
lagged dependent observations, random regressors or random parameters. 
Notice that the covariance matrix of the observations may depend on parame- 
ters in the mean. We shall discuss the generality and limitations of our set-up 
more fully in section 6. The weak consistency of the ML estimator obtained 
from normal (dependent) observations is proved in Theorem 3 and (under 
somewhat stronger conditions) Theorem 4. Two examples - the linear regres- 
sion model with a general covariance structure (Theorem 5) and the non-linear 
regression model with first-order autocorrelation (Theorem 6) - are presented, 
and the obtained conditions confronted with the literature. Some final remarks 

conclude the paper. 

2. Notation and set-up 

The defining equality is denoted by := , so that x :=y defines x in terms of 
y. N := { 1,2, . . . }, and Iw P denotes the Euclidean space of dimension p 2 1. 
An m X n matrix is one having m rows and n columns; A’ denotes the 
transpose of A; if A is a square matrix, tr A denotes its trace, IAl its 
determinant, X,(A) its tth eigenvalue, and A-’ its inverse (when A is 
non-singular). To indicate the dimension of a vector or matrix, we often write 

P(n) := (Pi, P2,. . .Y p,)‘, and Q,, for the n x n matrix 0. Mathematical expecta- 
tion and variance (variance-covariance matrix) are denoted by E and var, 
respectively. Measurable always means Boref measurable. The n-variate nor-’ 

. . . 
ma1 distribution with mean CL(,) and covariance matrix 52, is denoted 

N(P(“), 0,). A neighbourhood N(y) of a point y E r c Iw P is an open subset 
of I’ which contains y. ‘End of proof’ is indicated with n . 
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The set-up is as follows. Let { Yt, Yz, . . . } be a sequence of random variables, 
not necessarily independent or identically distributed. For each (fixed) n E N, 

let Y(n) :=(yt, Yz,..., y,) be defined on the probability space ([Wn, .%?,,, P,,,y) 
with values in (R”, g’,), where sS?~ denotes the minimal Bore1 field on Iw “. The 
following assumption will be made throughout. 

Assumption I. For every (fixed) n E N and A E S’,,, 

P ,,+JA x RI =P,,,[Al. 

This assumption relates the distribution functions of Y(,, and y(,+t), and is 
the consistency property used to prove Kolmogorov’s Theorem [see Rao (1973, 
p. lOS)]. 

The joint density function of YCn, is a non-negative and measurable function 
on Iw” and is denoted by h,( .; y); it is defined with respect to pL,, a u-finite 
measure on (Iw”, S?,,), so that 

The measures p,, and p,,+t are related by the next assumption. 

Assumption 2. For every (fixed) n E N, A E .9?‘, and B E .sS?~, 

~n+dA xB> =~n(Ah@). 

Of course, if 1-1, is the Lebesgue measure on ([w”, G?,,), Assumption 2 is 

trivially satisfied. 
We assume that /I,(.; y) is known, except for the values of a finite and fixed 

(i.e., not depending on n) number of parameters y := (yt, y2,. . . , y,) E F c Iw P. 
For every (fixed) y E lF4 “, the real-valued function 

Ln(Yb=4AY; y):=h.(y; y), Y E r, (2.1) 

is called the likelihood (function), and A,(y) := log L,(y) the loglikelihood 
(function). The true (but unknown) value of y E F is denoted by yO. AN 
probabilities and expectations are taken with respect to the true underbing 

distribution. That is, we write P instead of Py,, E instead of EYo, etc. 
For every (fixed) Y E Iw”, an ML estimate of y0 is a value Tn(Y) E F with 

4,(?,,(Y); Y> = SUPL,*(Yi Y>. 
yE I‘ 

(2.2) 
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We shall say that an ML estimator of y0 E r exists surely if there exists a 
measurable function y,, from W ” into r such that (2.2) holds for every y E R n.7 
Since the supremum in (2.2) is not always attained, a solution of (2.2) does not 
necessarily exist everywhere on R ‘. Even when for every y E R n precisely one 
solution of (2.2) exists, the so defined function need not be measurable.8 If, 
however, r is a compact subset of IWP and L,(y; y) a continuous function on 
r for every (fixed) value of y E W ‘, then eq. (2.2) always permits a solution; 
moreover, this solution can be chosen as a measurable function. 

Lemma 1. If (i) for every yixed) y E r, h,( y; y ) is a measurable function of 
y, and (ii) for every (axed) y E R “, L,(y; y) is a continuous function of y, 
then supy E r L,(y; y) is also a measurable function of y. If, in addition, r is 
compact, then a (measurable) ML estimator for y E r exists surely. 

Proof. This is lemma 2 of Jennrich (1969, p. 637) or lemma 2.30 of Witting 
and Niille (1970, pp. 75-76). An earlier existence result was stated by Bahadur 
(1960, p. 245) without proof, because (as he says) ‘it is rather long and 
uninteresting’. H 

Lemma 1 ensures the existence of an ML estimator, but does not say 
anything about its uniqueness.9 In this paper we shall not assume uniqueness 
of the ML estimator, so that several estimating sequences { yn} may exist. In 
fact, we may have, for every fixed n, an uncountable number of ML estima2 
tors, for example, if yi, y2,. . . , y,, is a sample from the uniform distribution 
f ( y; 8) = 1 if y E [ 19 - i, 8 + $1, and f ( y; 0) = 0 otherwise. 

A sequence { v,, } is said to be weakly consistent if 

lim P[?,EN(yo)] = 1, 
n-+cC 

for every neighbourhood N( yO) of yO. Given the existence of an ML estimator, 
we may examine its consistency. To this we now turn. 

‘Weaker definitions of an ML estimator are possible. Let M, denote the set of Y E R” for 
which an ML estimate exists, i.e., 

M,:= u y:yER", 
Ysr 

If there exists a measurable function $ from R” into r such that (2.2) holds for every Y E M,, 
and if a measurable subset M,’ of M, exists with P( ML) = 1, then we say that an ML estimator of 
ye E T exists a/most surely. [The set M, need not be measurable; see Witting and Nolle (1970, p. 
77).] If for every n E N a measurable subset M,’ of M, exists such that P( ML) + 1 as n + co, then 
we say that an ML estimator of ye E I exists asymptotically almost surely. See also Roussas (1965, 
p. 70), Brown and Purves (1973), and Heijmans and Magnus (1986a. section 1.2). 

‘See Schmetterer (1974, p. 310) for an example of this fact. 

9A recent contribution to the uniqueness problem of ML estimators is the paper by MUelfnen, 
Schmidt and Styan (1981). 
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3. A necessary and sullicient condition for consistency 

Our first consistency result is inspired by Wald’s (1949) paper and later 
extensions by Bahadur (1960) and Zacks (1971, pp. 233-235). 

Theorem I. Assume that 

(A.1 ) the parameter space r is a compact subset of R p; 

(A.2) forevery (Jixed) neN andyER”, the likelihood L,(y; y) is continu- 
ous on r. 

Then a (measurable) ML estimator T,, of y,, E r exists surely, and a necessary 
and sufficient condition for the weak consistency of every sequence { i;, } is that 

(A. 3) for eveq y Z yO E r there exists a neighbourhood N(y) of y such that 

lim P sup (A.($J)--A.(~~))<O =I. 
,I - 00 

1 @EN(Y) 1 
Let us briefly discuss the conditions which underlie Theorem 1. We note 

first that the parameter space r is a subset of R P, but not necessarily an 
interval. Condition A.1 requires r to be compact. In cases where r is not 
compact, we have essentially two possibilities. First, we may select a smaller 
space r’, a compact subspace of I? For example, if r= (-1, l), then, for 
some small 6 > 0, r’ := [ - 1 + 6,l - 61 is a compact subspace of r. The 
second possibility is to embed r in a larger space r*, a ‘suitable’ compactifi- 
cation of r. The question what a suitable compactification is, is not trivial. 
The issue has been studied by Kiefer and Wolfowitz (1956) and Bahadur 
(1967, p. 320) in the i.i.d. case. It would seem that what is needed is, roughly 
speaking, a compactification r* of the given r such that the likelihood 
function admits a continuous (or at least upper semi-continuous) extension to 
r*. We have not succeeded in finding a useful compactification for the general 
case treated by us,l” so that we have to follow the first approach. Since, from a 
practical viewpoint, compactness is not much of an issue, this does not seem to 
limit the scope of applications of the theorem. 

Condition A.2 (continuity) together with the assumed measurability of the 
likelihood L, (more accurately, of the density function h,) implies measur- 
ability of sup,L,(y; y); this is needed in A.3. Also, compactness and continu- 
ity (A.1 + A.2) together guarantee the existence and measurability of an ML 
estimator (Lemma 1). The continuity assumption A.2 does however imply 
certain restrictions. For example, if y,, y,, . . . , y, is a sample from the one- 
parameter distribution f ( y; y) = exp( y - y), y 2 y, or from the one-parameter 

“The one-point compactification is often unsuitable; see, e.g., Perlman (1970, example 4 and 
subsequent discussion, p. 276). 
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uniform distribution f(y; y) = l/y, 0 < y < y, then assumption A.2 is not 
satisfied, but the ML estimator is consistent in both cases.” It is possible to 
avoid the continuity assumption, but measurability of sup,l,(y; y) and the 
existence and measurability of an ML estimator must then be assumed. 

The necessary and sufficient condition A.3 is similar to condition (1.7) of 
Perlman (1970, p. 265) who studied strong consistency of (approximate) ML 
estimators under very general conditions, but assuming i.i.d. observations. 
Perlman’s theorem 4.1 (p. 278) gives certain local regularity assumptions under 
which his condition (1.7) is necessary as well as sufficient for strong con- 
sistency. Wang’s (1985, theorem 2.1) set-up is even more general. See also 
Crowder (1986). 

If we replace in A.3 the condition 

lim P sup (A,(+) -A,(y,)) <O = 1 
n+oC [ +sN(T) 1 

by the stronger condition 

limsup sup (A,(+) -A,(y,)) <O a.s. [PI, 
n-cc $Ev(y) 

then we can prove (in precisely the same way) that {T,} is strongly consistent, 
i.e., Tn --* y0 a.s. [P] for n + cc, rather than weakly consistent. 

Finally, we notice that, since an ML estimator may not be unique, Theorem 
1 (and all subsequent theorems) gives sufficient conditions for the consistency 
of every ML estimator. If A.3 is not satisfied, then at least one inconsistent 

ML estimator exists. 

4. Proof of Theorem 1 

Conditions A.1 and A.2 guarantee the existence (surely) of an ML estimator 
9, as a measurable function of y,, . . . , y, (Lemma 1). 

To prove weak consistency of { fn }, we assume A.3 and define 

where y0 is the true value of y, and N(y) c r is a neighbourhood of a point y 

in r. [Notice that Sn(yO, N(y)) is measurable by Lemma 1.1 Let NJ-r,,) be 
some neighbourhood of y,, E r, and let N,C(y,) be its complement in r. For 
every point 9 in N,(y,) there exists (by condition A.3) a neighbourhood, say 

N,(q), such that 

PIS,(yO,iV,(~))<O] 41 as n+cc. 

“Notice that in these two examples the set of positivity ( .v(,~,: h,,bCn,; Y) > 0) depends on Y. 
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The union of all such neighbourhoods of points in N,(y,) clearly covers 

N,(Y,): 

u N&) 1 N,c(y,). 

Since r is compact, so is N,‘(y,). Hence there exists a finite subcover of 

N,C(y,), i.e.,. we can find a finite number of points +. . $I, in N,C(y,) with 

neighbourhoods Nh( +,,), h = 1,. . . , r, such that 

and 

hyA+h) ’ N,c(YO)~ 

P[$(Y,, N,($,)) ~01 + 1 as n+ 00, h=l ,..., r. (4.1) 

For fixed y, we thus obtain 

sup A”(@> 5 sup A,(+)= max sup A,(+>. 
OE%‘(YO) bEU;,-1%(%) 1 shsr $~k’~(+,,) 

Subtracting A,(y,) from both sides of this inequality yields 

S,(yO, N,‘(Y,)) 5 max S,(Y,, N&Q,)), 

and hence 

p[$(Y,, %(Y,,)> <o] 2 p max &(Y,> Nh(+,)) <o + 1 
lshsr 1 

as n+co, 

using (4.1). (The fact that the maximum is taken over a finite number of 
points, which follows from the compactness of r, is essential.) In other words 

(using the fact that Tn exists), 

P[+,,GN,‘(y,)] -1 as n-cc 

Since this is true for every neighbourhood N,,(y,) of yO, we obtain 

plim T, = yO . 
n+a 

To prove the converse, assume that A.3 is not true. Then there is a point 
y # yO E ZY such that for every neighbourhood N(y) of y, 

1iminfP sup (A,(@) - An(yo)) < 0 < 1. 
,I + m @EN(Y) I 
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Let N,( yO) be a neighbourhood of y0 such that y @ N,( y,,), and let N,C( yO) be 
its complement in r. Choosing N(y) small enough that N(y) c N,C(y,), we 
obtain 

lim inf P 
,1 + 00 [ 

sup (&J@) - A,(Y,>) < 0 < 1. 
+E%C(YO) 1 

Hence there must be at least one sequence { qn} such that 

liminfP[t,EN,(y,)] cl. 
II * cc 

This shows that not every { 9,) is consistent and concludes the proof of 
Theorem 1. l 

5. The consistency theorem for dependent observations 

In this section we introduce a normalizing function k,, and, by slightly 
tightening condition A.3 of Theorem 1, obtain conditions for the consistency 
of an ML estimator, which are more practical (but still plausible and of 
sufficient generality) than A.3. We shall refer to the following result as ‘the 
consistency theorem for dependent observations’, since it is this theorem 
which is most likely to be of use to investigators wishing to establish weak 
consistency of an ML estimator obtained from generally dependent observa- 
tions. 

Theorem 2 (Consistency Theorem for Dependent Observations). Assume that 

(B.1) 

(B.2) 

(B-3) 

the parameter space T is a compact subset of R P; 

foreuery ($xed) nEN andyER”, the likelihood L, (y; y) is continu- 
ous on T; 

for every y E T, y # y,,, there exists a sequence of non-random non-nega- 
tive quantities k,(y, yO), which may depend on y and yO, such that 

(i) liminfk,(y,y,) > 0, 
IlAoo 

(ii) plim (l/k,( Y,Yo))(4(Y) -4JYlJ) = -1; 
n--rcc 

(B-4) for every y # y,, E T there exists a neighbourhood N(y) of y such that 
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Then a (measurable) ML estimator T,, of yO E r exists surely, and every 
sequence { B,, } is weakly consistent. 

Discussion. Whereas condition A.3 of Theorem 1 concerns the local be- 
haviour of the loglikelihood ratio (LLR) A,($) - A,(y,,), Theorem 2 condi- 
tions the behaviour of the normalized LLR. The normalizing function k, by 
which the LLR is divided is not required to be continuous in either y or yO. 
An obvious candidate for k, is the absolute value of the Kullback-Leibler 
information, that is, 

knh YO) := -E(~(Y) - A,(Y,)), (5.4 

if the expectation exists. l2 In the standard i.i.d. case k,, so defined, will be a 
positive multiple of n, but in more general situations this will not be the case. 

With k, defined as in (5.2), B.3(i) is a necessary identification condition; in 
fact, Akahira and Takeuchi (1981, p. 24, theorem 2.2.2) demonstrate that 
consistency implies that k,(y, yO) + 00 for every y f yO. Condition B.3(ii) is 
then also plausible, and will hold, for example, if 

(l/k,f(v, yo))var(A,(y) - A,(Y,)) + 0.13 

Condition B.4 is a kind of ‘local equicontinuity in probability’ condition on 
the sequence of normalized random functions { f,, } defined by 

f,(G) := A,(+)/k,(y, yo>. 

We shall see in the next two sections how such a condition can be verified in 
the normal case. In general it seems a good idea to separate (if possible) 

f,( +) -f,,(y) into a random part which is independent of 9 and bounded in n 
(with probability approaching one), and a non-random part which is equicon- 
tinuous at y. In the normal case, for example, we are able to find non-random 

sequences {a,(G)) and {b,(G)) and a sequence of random variables { x, } 
satisfying these requirements, such that 

fA> -f,(v) <aA4 +b&J)x,. 

Proof of Theorem 2. Since conditions A.1 and A.2 of Theorem 1 are implied 
by B.l and B.2, it suffices to verify that condition A.3 holds. To this end we 

l2 If the expectation does not exist, we may truncate the random variables as in Hoadley (1971, 
p. 1979). 

I3 To prove the equivalent of B.3(ii) for strong consistency is more difficult. 



264 R. D. H. Heijmuns und J. R. Mugnus, Consistenf ML estimation 

write 

p (l/kh Yd sup (A,(+> - AJYO)) < 0 
[ + 1 

= 

2 

2 

p Wk)suP(A,W -A,(Y)) + (l/kJ(Atl(Y) -A,(Y,)) -CO 
1 cp 1 
P (l/k) sup (A,(+> -A,(Y)) < 1 

[ + 

&(l/kz)(A,(~) -A,(Y,)) = -1 1 
P (l/k,)su~(A,(+) -A,(Y)) ~1 

[ + 1 
+p[Wkz)(A,(~) -An) = -11 -1, 

supremum is taken over $I E N(y). Letting n + cc and using B.3 where the 
and B.4, it follows that 

d(Wn(~, ~,))sup(A,(+) - An( ~01 + 1 as n+cc, 
1 + 1 

and hence, since l/k,(y, yO) is bounded in n (by B.3) 

supA,(A,(y,)<O -+l as n-cc, + 1 
which completes the proof. W 

6. The consistency theorem for normally distributed (but dependent) 
observations 

So far we have assumed that the joint density of (y,, y,, . . . , y,) is known 
(except, of course, for the value of the p X 1 parameter vector yO), but we have 
not specified this function. From this section onwards we shall assume that the 
joint density is normal. The normality assumption is of course highly restric- 
tive, but also of considerable practical and theoretical interest. The following 
theorem establishes conditions under which an ML estimator obtained from 
normal (but generally dependent) observations is weakly consistent. 



R. D. H. Heijmnns and J. R. Magnus, Consistent ML estimation 265 

Theorem 3. Let { y,, y2, . . . > be a sequence of random variables and assume 

that 

(CL) 

(C.2) 

(C.3) 

(C.4) 

(normality) for every (fixed) n E N, y(,,, := (y,, Y2,, . . . , y,) E R” fol- 
lows an n-variate normal distribution 

Y(n) = N(P,,,(YfJ, J-Go)), y,ETclRP, 

where y,, is the true (but unknown) value of the parameter vector to be 
estimated, and p, the dimension of r, is independent of n; 

(compactness) the parameter space T is a compact subset of R f’; 

(continuity) p(,): r--+ R” and 52,: T-t lRnx” are known continuous 

vector (matrix) functions on r for euety (fixed) n E N; 

(non-singularity) the matrix G,(y) is positive definite (hence non-singu- 

lar) foreuerynEN and YET’. 

Now de$ne 

k,(y, yo) := &n,(~) - ~~,)(~o))‘~2n’(~)(~~n)(~) - PW(YO)) 

fl%(lfuYJ l/lQ,( y)l) -n/2, + + tr ~;YY>~,(h) - 

and assume, in addition to C.l-C.4, 

(C. 5) (identification) for every y # y0 E r, 

CC.61 

(C-7) 

for every y # y0 E r, 

(i) limsup(l/k,( y, h))tr Q(2,Yy)Q,(yO) < ~0, 
n-+m 

(ii) lim (l/kz( Y, y~))tr(.n,‘(y)g,(y,))‘= 0; 
n*cc 

(equicontinuity) for every y + y,, E r there exists a continuous function 
M: r -P W (depending possibly on y and yO) with M(y) = 0, such that for 

all G E r, 

(i) limsup (l/k,( Y, Y,m%(lfL(Y) l/P,(~) I) 2 M(G), 
n+cc 

(ii) 
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Then a (measurable) ML estimator 9, exists surely, and every sequence { T, } is 

weakly consistent. 

Discussion. Let us comment on each of the seven conditions of Theorem 3, 
one by one. 

(C.l) The assumption of unconditional normality is, of course, rather strong, 
but not as strong as it may seem. Let us consider the class of models included 
in this assumption. First, the classical non-linear regression model 

Y, = @(XV P,) + Et, t=l,...,n, 

where +( .) is the known response function, x, is a non-random vector 
containing the values observed for each of the explanatory variables at time t, 
the E, are unobservable errors whose joint distribution is known to be 

and PO and 0, are the true values of the parameter vectors to be estimated. 
Note, however, that our set-up allows for the fact that the covariance matrix of 
the observations may depend on parameters in the mean, thus including cases 
such as the type of heteroskedasticity where the variance of Yt is proportional 
to the square of the mean. l4 Secondly, linear models with lagged dependent 
observations. For example, 

Y, = a + /Q-r+ YX, + a,, t=1,2,..., 

where {x,} is a sequence of observations on the non-stochastic regressor, Y, is 
fixed, and {e,} is i.i.d. N(0, u2). Then (Yt, Y,, . . . , y,) is n-variate normally 
distributed, with 

f-l r-l 

pt:= Ey,=y&+ a c p’+ y c b’X,-,, t=l n, ,--.> 
j=O j=O 

and 

S(s. 1) 
0 sI := COV( Y,, Y,) = uZp’s-” c p2j, s,t=l,..., n, 

j=O 

where 6(s, t) := min(s - 1, t - 1). The covariance matrix 52 = (a,,) depends of 

14See, e.g., Theil (1971, p. 245). 
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course on /3. The situation where the errors {E,} are not i.i.d. also falls within 
our framework; only the expression for ast becomes more complicated. 
Thirdly, linear models with stochastically varying coefficients or stochastic 
regressors. The linearity, except in certain pathological situations, is essential 
in order to maintain unconditional normality. However, models that are linear 
in the stochastic regressors or lagged endogenous variables are allowed to be 
non-linear in the (non-random) parameters, and models that are linear in the 
stochastic parameters may be non-linear in the (strictly exogenous) regressors. 

The fact that the observations { yt } are scalars is not restrictive, because of 
the assumed general dependence. The observations may be finite-dimensional 
vectors and even the orders of these vectors may vary with t. The only 
requirement is that their joint distribution is multivariate normal. 

In many cases the distribution of yen, is known to be 

in which case we can concentrate the likelihood with respect to a2. We thus 
obtain conditions for the consistency of {T,,}, but, although the ML estimator 
eU2 is explicitly given by 

it is by no means obvious how we should prove the consistency of { 6:}_ Since 
it is clearly important to know whether { $} is consistent (the precision of Tn 
depends on u,“), we do not pursue this avenue any further. 

(C.2) The parameter space is not necessarily a p-dimensional interval, but if 
it is, then the parameter space for each individual parameter is a closed and 
bounded interval in R’. 

(C.3) This ensures, for each fixed n and (yl,. . . , y,,), continuity of the 
likelihood function on r. 

(C.4) For fixed n, fin(y) must be non-singular for every value of y. But, for 
n --, cc, there will in general be values of y such that 

I%(Y) I-4 or I%(Y) I + 00. 

The positivity of ls2,(y)l will in general imply certain inequality relationships 
between the parameters. The fact that r is not necessarily an interval (see C.2) 
is thus seen to be important. 

(C.5) In section 5 we remarked that the normalizing function k, can often be 
conveniently chosen as the absolute value of the Kullback-Leibler informa- 
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tion, see (5.2) and this is precisely what we have done here [see (7.10) in the 
proof of Theorem 31. We also noted in section 5 that k, + cc is a necessary 
condition for consistency. Our condition is stronger and requires that the 
information contained in the sample on each individual parameter grows at a 
rate which exceeds fi. Notice that k,(y, yO) 2 0 for every n E N with equality 

if and only if CL&Y) = I+,) and Q,(Y) = %,(~d. 

(C.6) Let et,,) := y(,, - pcnj(y,,). The two conditions in C.6 then imply that 
the normalized random variable x, := &{,,12;1(y)Ecn/kn(y, yo) is ‘bounded in 
the sense that 

P(x, < K) + 1 as n-co, forsome K>O. 

(C.7) The three conditions in C.7 are, in fact, equicontinuity conditions.15 
For example, if we let 

AI(+) := (l/k,(Y, Yo)&“J+) - r-l@,(Y))‘~,‘(Y) 

then f,(y) = 0, and condition C.7(iii) is valid if the sequence { f,,} is equicon- 
tinuous at every point y # y,, E r. To prove consistency in the independent not 
identically distributed case, Hoadley (1971, p. 1981) assumed equicontinuity of 
the marginal densities which is much stronger and less easy to verify than C.7. 
See also Domowitz and White (1982, p. 37) and White and Domowitz (1984, 
p. 147). Of course, it suffices to find three continuous functions MI, M2 and 
M3 satisfying C.7(i), (ii) and (iii), respectively. The maximum of these three 
functions will then satisfy the requirements of C.7. The assumption that M is 
continuous on r is stronger than necessary; it suffices that A4 is continuous at 
y. (Recall that M may be different for each y.) 

7. Proof of Theorem 3 

We shall verify conditions B.l-B.4 of Theorem 2. Clearly C.2 implies B.l. 
The loglikehhood reads 

Condition C.3 thus implies B.2. 

15A sequence { j, , n E N } of functions f,,: r + R is said to be equicontinuous at a point y E F if 
givene>OthereisanopensetN(y)containingysuchthatIf,(~)-j,(y)(~~forallcpEN(y) 
and all n E WI. If ( f, ) is equicontinuous at each point of r, we say that { f, ) is equicontinuous on 
r. Some authors express the same concept by saying { f,, } is continuous at y (or on r), uniformly 
in n. We prefer ‘equicontinuity’ because it avoids the possible confusion between uniform 
continuity on r (a property of a function) and the much stronger concept of continuity on r, 
uniformly in n (a property of a sequence of functions). 
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To prove the first part of B.3 we simply note that the identification 
condition C.5 implies k,( y, YO) + 00, so that certainly liminf k,(y, yO) > 0. To 
prove the second part of B.3 we need some intermediate results. Define 

K(G, Y) := (P@)(@) - ~C,,(Y))‘s2,l(~)(~~~~(~) -P@,(Y))? (7.2) 

and 

so that 

(7.3) 

Also define 

A,(+, Y) := n,"'t~)a,t~)a,~'~(~). 

Then we can prove that 

(l/WY, YO))(P(,)(Y) - ~~,)(Y0))'~2,1'2tY)An(Y, YoFP2(Y) 

x (P(n)(Y) - P(“,(Yd) 

s (I/~~tY~Y~))[(~,n,tY) - ~cl,,,(Y,))‘~,‘(Y)(~c,,(Y) - P(“)(YO))] 

x max ~,(A,(Y,Y,)) 
lltsn 

= ( K(Y, ~d/kt~, Y,))\~(WXY~ vd) max ~,(4h ud) 
lst5n 

2 2 (l/ki(u, y,_,)tr@,,(v, yo) -, 0 as n b 00, (7.4) 

using (7.2), (7.3), and condition C.6(ii); also, 

(l/k?%u, y,))tr(I,, - A,(y, yo)J2 --) 0 as n - 00, (7.5) 

in view of C.5 and C.6. 

“To prove that k; 20, let A:=9-1~2(~)~(y)~-1~2(~). Then we must show that trA - 
logId - n 2 0. Since A is positive definite, its eigenvalues h,, , h, are positive and hence 
X, - log X, - 1 2 0. Summing over i = 1,. , n yields the required inequality. 



210 R. D. H. Heijmans and J. R. Mupws, Consistent ML estimation 

Letting 

E(n) :=v(n, - P(“)hA 

we have from (7.1) 

where 

P,(+,Y) := i log(A,(h v) I+ :(Q(Y,Yo) - %A YO)), (7.7) 

b”(A Y) := KW(P(n)W - P(")(Y)) 

-=4(47 Y)(P(n)(Y) - P(.)(YcJ)9 (7.8) 

uhYb= -:@,‘(G) - Q,'(Y)). (7.9) 

Since EE, = 0, Eq,&,) = Bn(yo) and E&j&j&k = 0 for all i, j, k, we thus obtain 

E@,(Y) - A,(Y,)) = &,,(Y, yO) + trk(y, yo)Qn(yo) 

= -k,(Y, Yo), (7.10) 

and 

var@,(y) - A,(Y,)) = &(Y, Y@,(Y~)&(Y, yO) 

+W4(v, Y&L(Y~)~ 

= (P(,)(Y) - ~(,)(Yo))'L~~~'~(Y)A,(Y, YO> 

x~,"2b)(P(n)(Y) - P(")(YO)) 

+ i tr(Z, - A,,(y, uo))2, 
and hence 

plim(l/k,(y, yo))(An(y) - A,(Y,)) = -1, 

using (7.4) and (7.5). This shows that B.3 holds. 
Finally, let us verify condition B.4. Denoting the eigenvalues of A; ‘( y, 9) = 

fi:‘2(~W,‘b#4~:‘2(~) by lp...,S,r, and using the definitions (7.2), (7.8) and 
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(7.9), we obtain” 

and 

= (P(,)(Y) - P,.,(Yo))‘(WY) - Q,W)(P(n,(Y) -h&o)) 

-2(4+) - ~,.,(Y))'S,'(~)(P~,,(u) - h”)(YO)) 

I (P(,)(Y) -P(,,(Yo))'(wY) - Jw~))b,n,(Y) - hnho)) 

+2\li53v)(Pc,,(Y) -p,,,(Yo))'~~l(~)(tL(.)(Y) -4yd 

(7.12) 

Also, from (7.6), 

I7 We use the following two inequalities, which are easily proved: 

d(a-c)‘L?(a-c) I@Z+@G, a’Aa s (a’S2-‘a) max X,(O”2AQ1’2), 
I<rS” 

where Sz is positive definite and A symmetric, both of order n X n, and a and c are n X 1 vectors. 
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Letting x, := E;“, K1(~)e&,,(~, vO), thus yields 

(l/k,(Y, Yo>)@*(@) -A,(Y)) 

s (2~,(Y,Y~))-‘l~gl~,‘(9)J2n(Y) I 

+ (ma0 - S,I + (mfi&)JK(y, G)/k,(y, yO) )(x, + 4), (7.14) 

using (7.3) (7.7) and (7.11)-(7.13). Notice that the only random component at 
the right side of (7.14) is x,, and that the distribution of x, does not depend 
on 9. Condition C.6 guarantees that Ex, is bounded in n, and that varx, + 0 
as n + co. Hence 

lim P(x,<K)=l, 
n+oo 

(7.15) 

for some K depending possibly on y and y0 but not on n. 
Now let y + y,, E r. By C.7 there exists a real-valued function M, defined 

and continuous on r, such that C.7(i)-(iii) hold and M(y) = 0. Since M is 
continuous at y, there exists a neighbourhood N(y) of y such that 

sup M(G) IA := min(4, g2(K)), 
+EN(?) 

(7.16) 

where g(K) = (7K + 29))‘. Thus, using (7.14), C7(i)-(iii) and (7.16), 

L nlimWP[g(K){l+7(x,+4)} cl] 

= lim P[x,<K]=l, 
n-+oo 

by (7.15). This shows that B.4 holds. 
All conditions of Theorem 2 thus being satisfied, Theorem 3 follows. n 

8. The case of uniformly bounded eigenvalues 

In many situations of interest to econometricians, the eigenvalues of the 
covariance matrix 52, are known to be uniformly bounded in the sense that 



R. D. H. Het&mms and J. R. Mugnus, Consistenf ML estimation 273 

for all n E N and y E r. The non-linear regression model with first-order 
autocorrelation is just one of numerous examples of this situation. (See section 
10 for a detailed discussion of this case.) By assuming uniformly bounded 
eigenvalues and normality, we obtain the following theorem as a special case 
of Theorem 3. 

Theorem 4. Let { yl, y2,. . . } be a sequence of random variables and assume 
that 

(D.Z) (normality) for every (fixed) nEN, ~~,):=(Y~,Y*,...,Y~)EIW~ fol- 
lows an n-variate normal distribution, 

(D-2) 

(0.3) 

(0.4) 

(D.5) 

where y,, is the true (but unknown) value of the parameter vector to be 
estimated, and p, the dimension of T, is independent of n; 

(compactness) the parameter space T is a compact subset of R *; 

(continuity) p(,,: r+ W” and Q,: T+ RnXn are known continuous 
vector (matrix) functions on I’ for every (fixed) n E N ; 

(uniformly bounded eigenvalues) there exist positive numbers +I and 
I+$, such that for every n E N and y E T, 

0 < J/I< W?“(Y)) s $2 < a> t=l,...,n; 

for every y E T there exists a continuous function M: T -+ R with 
M(y) = 0, such that for all $I E T, 

Now dejne 

k,(y, yo) := &,,(Y) - P~,~)(Y~))‘%‘(Y) 

X(PJY) - c,,,(Y~)) + + tr K’(y)%(yO) 

- %3( lK(y0) l/P,(y) I) -n/2, 

and assume, in addition to D.l -D.5, 

(0.6) (identification) for every y # y0 E T, 

liminfk,(y, y,)/n > 0; 
“+m 
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(D. 7) (equicontinuity) for every y # y0 E r there exists a continuous function 
M*: r + W (depending possibly on y and y,,), such that for all $I E r, 

limsup(l/k,(y, Y~))(~L~,)(+) - cL~,)(y))‘(cLf,)(G) - P(,,(y)) 
n+m 

2 M*W. 

Then a (measurable) ML estimator 7” exists surely, and every sequence { T,, } is 
weakly consistent. 

Discussion. Conditions D.l-D.3 are as before. Condition D.4 implies 
‘asymptotic independence’ of the observations in the sense that for fixed m, 
cov( y,, y,) + 0 as n + bo. This follows immediately from the fact that, for 
every n 2 m, the mth diagonal element of G:(y) is bounded by J/z, i.e., 

c:=, COV2(Y,, Y,) s +;. 
Condition D.5 amounts to equicontinuity of the sequence of functions { f,,}, 

defined by 

This sequence is uniformly bounded on a compact set, and, for every n E N, f, 
is uniformly continuous on r. Nevertheless, the equicontinuity of {f,,} on r is 
not guaranteed. l* Hence we assume it. 

The identification condition D.6 is stronger than the corresponding condi- 
tion C.5 of Theorem 3, and requires that the Kullback-Leibler information on 
each individual parameter grows at least as fast as n, the number of observa- 
tions. 

Finally, condition D.7 is a much simplified version of C.7, due to the fact 
that the eigenvalues of O,(y) are uniformly bounded. 

Proof of Theorem 4. We shall verify conditions C.l-C.7 of Theorem 3. 
Conditions C.l-C.3 are equivalent to D.l-D.3, C.4 follows from D.4, and C.5 
from D.6. Condition C.6 is implied by D.4 and D.6, because 

max x,(n,“*(~)~~(~~)~2,‘/*(~)) ~#2/+1y 
lifer 

using D.4, and therefore (by D.6) 

limsup(l/k,(Y, Ya))tr( Q;‘(Y)&,(Y,)) 
n-roe 

n 
I limsup 

42 
PI+ cc k,(Y,Y,) . J/1 < Go9 1 

‘*See Rudin (1964, p. 143) for an example of this fact. 
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and 

as n-co. 

To complete the proof we need to verify C.7. Let 

q := q(y, yO) := liminfk,(y, yo)/n. 
n-rm 

Then, by D.6, q > 0 and thus 

limsup (W,(Y, Y,))log( l%(Y) l/l%(G) I) 
n+cc 

2 limsup(l/k(Y, Y,))(tr K1(+)Q,(Y) - n) 
i7+aJ 

5 li;+sip (n/k(Y, v,))( I~~~h,(K1(+))) 

x lT;zn IW&z(Y) - &I(+)) I 

2 wb/Wd~ 
using D.4 and D.5. Similarly, 

limsup max (I- x,(Kl(+)%(Y)) 1 

n+cc 191sn 

and, using D.4 and D.7, 

limsup (W,(Y, yO))( CL(,)(+) - ac,,(Y))‘Q;‘(Y) 
“-CC 

x (P&N - P@,(Y)) 

< limsup 
n+ao 

{ ( ma A,( K1(Y)))(W,(Y9 Yo)) 
1<115n 

x (CL(&) - P,.,(YNP,,,(@) - PW(Y))) 

5 ~*(Gk 

275 
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foreveryy#y,Erand+Er.IfwenowdefineM,,: r+iRby 

Theorem 5. Let {y,, y,,... } be a sequence of random variables and assume 
that 

(E-1) (normality, linearity) for every Cfixed) n E N, yCnj := ( yl, y,, . . . , y,) E 
R” follows an n-variate normal distribution 

(E-2) 

(E.3) 

where f3,, E B c R k and 8, E 0 c R’ are the true (but unknown) values 
of the parameter vectors to be estimated, and k and 1 are independent of 

n; 

(compactness) the parameter space B X 0 is a compact subset of R k+‘; 

(regularity conditions on 0) (i) for euely (fixed) n E WI, 9,: 0 -+ !JU”x” 
is a known continuous matrix function on 0, (ii) there exist positive 
numbers #1 and #2 such that for every n E N and 8 E 0, 

0 < $1 I A,(&(@) 5 $2 < 0, t=l n, ,.*-, 

and (iii) for every B E 0 there exists a continuous function M: 0 -+ R 
with M( 8) = 0, such that for all $I E 0, 

limsup max lh,(S2,(~)-52,(e))l~M(~); 
n-tee lst_<n 

(E-4) (identification of 8) for every $I # 0 E 0, 

then M,, is a continuous function on r and satisfies the requirements of C.7. 
This completes the proof. W 

9. Example 1: The linear regression model 

Let us now specialize Theorem 3 even further by assuming, in addition to 
normality, (i) linearity, (ii) functional independence of the mean parameters j3 
and the covariance parameters 8, and (iii) uniform boundedness of the 
eigenvalues of 0. For cases where (iii) is satisfied, but not (i) or (ii), Theorem 4 
is available; cases where (iii) is not satisfied fall under Theorem 3. 

liminf(l/n)(tr~~‘(~)~,(~)-~0g((Q,(e)I//J2,(~)I)-~) ‘0; 
n-+m 
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(identification of /3) the (non-random) k X k matrix Q, := (l/n)X,lX,, is 
non-singular for some n E N, and 

limsup tr Q;' < cc; 
n+m 

(equicontinuity) for euev p # & E B there exists a continuous function 
M* : B + R (depending possibly on j3 and &) with M*(p) = 0, such that 
for all (Y E B, 

(P - d'Qn@ - a) 
“;_‘ip (~-fio)'Qn(/j-~o) ‘M*(a)’ 

Then a (measurable) ML estimator y, := (&,,, 8,,) exists surely, and every 
sequence {T,} is weakly consistent. 

Proof. We shall verify conditions D.l-D.7 of Theorem 4. Conditions D.l-D.5 
follow immediately from E.l-E.3. To prove D.6, let 

k;(P, 8, PO) := (P - P,)‘X,P,‘(~)X,,(~ - P,). 

Then 

liminfk:,(j3,8,&)/ n ’ _ 1 
n-cc 

iminf ( I~fi~&(K1(@)))( ,r$:nh(Qn,) 
n+m 

for every /3 # &, using E.3(ii) and ES. This, together with E.4, proves D.6. 
Finally, to show that D.7 holds, we assume E.6. The function M,,: B X 0 

-+ 08 defined by 

M&P, 8) := V%%(P), DEB, em, 

then satisfies the requirements of D.7. Hence all conditions of Theorem 4 hold 
and the result follows. n 
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Discussion. The functional independence of /3 and 8 is a rather strong 
assumption and excludes lagged dependent observations or stochastic regres- 
sors. A consequence of this assumption is that identification of /I and 8 now 
involves two conditions (E.4 and E.5) one for 8 and one for j3, which 
simplifies its verification. In E.4 we notice that 

for all n, with equality if and only if a,(+) = 52,(e). In the special case where 
s2, = u ‘Z”, E.4 becomes 

u,‘/u 2 - log(a,2/a2) - 1 >o, 

which is true for every u2 + ui. 
Condition E.5 is equivalent to 

liminf min h,(Q,) > 0, 
“+m lstln 

which is, however, more difficult to verify. This condition is rather less 
restrictive than the more common condition that (l/n)X’S)-‘X tends to a 
positive definite matrix as n --) cc.19 

Condition E.6 is a simplified version of D.7. Notice that E.6 is a condition 
on /3 only, and does not involve 8. 

10. Example 2: First-order autocorrelation 

In the first example (Theorem 5) we studied the linear model, assuming that 
the covariance matrix of the errors depends upon a finite number of unknown 
parameters and satisfies certain regularity conditions. In this section we 
present another example. This time we consider the non-linear regression 
model, but we specify the error covariance matrix as arising from a first-order 
autoregressive process. 

Theorem 6. Let {y,, y,,... } be a sequence of random variables and assume 
that 

(F.Z) (normality) forevery cfixed) nEN, yt,):=(yl, y2,..., YJER” follows 
an n-variate normal distribution, 

“Magnus (1978, assumption i*) even assumes uniform convergence of (l/n)X’K’X. 
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(F-2) 

(P-3) 

(F.4) 

(F.5) 

where 

v,(P) := &5 

1 p p2 . . . p-1 

P 1 P . . . P 
n-2 

p2 p 1 . . . p”-3 

P 
n-l 

P 
n-2 

P 
n-3 . . . 1 

(10.1) 

and &,EBCWk, ~,EPcW, and u~E~CW are the true (unknown) 
values of the k + 2 parameters to be estimated; 

(compactness) the parameter space B X P X E is a compact subset of 
R k+2; in particular, there exist constants m, > 0, m 2 > 0, and 0 < 6 5 1 
such that 0 < ml s ui I m2 < + co and IpO( s 1 - 6; 

(continuity) II(,): B + W” is a known continuous vector function on B for 
every Cfixed) n E N; _ 

(identification of /?) for every a # p E B, 

(equicontinuity) for every /3 # & E B there exists a continuous junction 
M: B + R (depending possibly on p and PO) with M( /I) = 0, such that 
for all a E B, 

Then a (measurable) ML estimator 9, := (&, A, 6:) exists surely, and every 
sequence ( 9, } is weakly consistent. 

Discussion. A special case of Theorem 6 is, of course, the non-linear regres- 
sion model 

Y,=~btAl) +&I, t=1,2,... 

with 

where +( .) is the known response function, and {x,} is a sequence of 
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non-random regressor vectors. Let us compare our results with those of 
Frydman (1980), who proves strong consistency of the ML estimator where we 
only prove weak consistency. Frydman’s paper, which goes back to Dhrymes 
(1971) and Amemiya (1973, lemma 3) uses some very strong assumptions 
compared to ours: (i) we require that +(x,, +) is continuous on B for every 
(fixed) value of x, in some fixed space .%; Frydman requires that $I( .) is not 
only continuous, but twice continuously differentiable in all arguments (i.e., on 
.TX B); (ii) to apply Amemiya’s lemma 3, Frydman needs the assumption that 
C#B( 0) is one-to-one, we don’t; (iii) the identification condition F.4 is similar to 
Assumption 4 of Frydman, except that he needs to assume that the expression 

converges to a finite positive limit for every /3 # (Y E B, whereas we only 
assume that this expression remains positive for large n; (iv) Frydman assumes 
that the space Z is compact. ‘Ibis is a very heavy assumption indeed, we only 
assume F.5. 

11. Proof of Theorem 6 

As in the proof of Theorem 5 we shall verify the conditions D.l-D.7 of 
Theorem 4. Condition D.1 follows from F.l, D.2 follows from F.2, and D.3 
from F.3 and the fact that 0*p’-~/(1 - p*) is a continuous function of a* and 
p foreverytEN. 

We recall that 

IK(P)l=L/(L-P*)? 

and 

0 . . . 

-P -** 

1+p* -*. 

0 . . . 

0 . . . 

0 

0 

0 

1 + p* 

-P 

7 

0 

0 

0 

-P 
1 

[See, e.g., Theil (1971, p. 252).] 
To demonstrate D.4 and D.5 we need a special case of Perron’s theorem [see 

Marcus and Mint (1964, p. 145)] which states that 

IA,(A) Is max 5 la,,L t=l,...,n, (11.1) 
llisn ]=I 
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for any real symmetric n x n matrix A = (aij). Using (11.1) we prove easily 
that 

WQP)) <l/Cl -MY and A,( K’(P)) I (1 + IPI)‘~ 

and therefore that 

f <A,&&)) I l/S29 (11.2) 

where 6 is defined in F.2. This, together with the fact that m, I a2 I m2, 
proves D.4. 

To prove D.5 we write 

= ~,“‘(P,)(U’W,(P, PO) + (u’- %yL)V’(P,), 

where W,( p, pO) := V,-‘j2( pO)V,( p)V; ‘12( pO) - I,. Defining the symmetric 
n x n matrix function C,, by 

1 0 -1 0 ... 0 0 
-1 x -1 *.* 0 0 

C,(x):= p ;’ 7 
... O 0 

0 0 (jj . . . -1 
\o 0 0 ... -“I 0 

one verifies that 

K’(P) - KY&I) = (P - P,MP + PO)? 

and hence that 

\ 

9 XER, 

I 

A,( W”(P, PJ) = ~,(v,-“2(P,)v,(P)v,-“2(Po) - 42) 

= ~,(~,“‘(P)V,,‘(P~>V,‘/20 - L) 

= (PO- Ph( V’bWP + PoW2b)). 
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tt follows that 

using (11.2) F.2 and (11.1). This completes the proof of D.5. 
To prove D.6 we note (after some algebra) that 

-I%( IdK(P0ZI/l~‘V,(P) I) - n) 

i 

d 
2 

= 2-log$-l + 
1 

qxP - PO)* > o 

a*(1 -pi) ’ 

whenever u2 # ui or p # p,,. This, in conjunction with F.4, proves D.6. 
Finally, to show that F.5 implies D.7, we consider the function M,: B X P 

x I? + W defined by 

M*(p,P,u2):=(m,/S2)M(p), PEB, PEP, u2~aZ, 

and notice that IV* satisfies the requirements of D.7. 
All conditions of Theorem 4 are thus satisfied and the result follows. n 

12. Concluding remarks 

Our aim in writing this paper has been to establish intuitively appealing and 
verifiable conditions for the existence and weak consistency of an ML estima- 
tor in a multi-parameter framework, assuming neither the independence nor 
the identical distribution of the observations. The paper has two parts. In the 
first part, which contains Theorems 1 and 2, we assume that the joint density 
of the observations is known (except for the values of a finite number of 
parameters to be estimated), but we do not specify this distribution. In the 
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second part (Theorems 3-6) we do specify the distribution and assume joint 
normality (but not independence) of the observations. 

The normality assumption is, of course, quite strong, but also quite common 
in econometrics. We notice, however, that the only essential requirement for 
the application of Theorems 1 and 2 is knowledge of the conditional density of 
Y, given Y1, . . . , y,_ 1. Hence, if we relax the joint normality assumption, and 
only assume that the distribution of the conditional random variables 

YAY i, . . . , y, _ l is normal, Theorem 2 would remain the appropriate instrument 
in proving consistency of the ML estimator. Further research is needed to 
establish the counterpart of Theorem 3 for conditional normality. 

If the ML estimator is consistent, another interesting extension of the theory 
would be to determine how fast the convergence takes place. Thus, we would 
want to find a function G(n), perhaps +(n) := Ae-““, such that 

P[]?~--a]2~] I+(n) forevery nEN. 

There is also the possible problem of misspecification.20 We have assumed 
that the true distribution underlying the observations belongs to the paramet- 
ric family defining the ML estimator. If this is not the case, further research 
will have to establish the precise conditions under which the quasi-maximum- 
likelihood estimator is consistent. 

Finally, weak consistency, although important in its own right, is also a first 
step towards proving the efficiency and asymptotic normality of the ML 
estimator obtained from dependent observations. This is taken up in Heijmans 
and Magnus (1986a, b). 
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