The central limit theorem for Student’s distribution

Problem 03.6.1

Karim M. Abadir and Jan R. Magnus

PROBLEMS AND SOLUTIONS

PROBLEMS

03.6.1. The Central Limit Theorem for Student’s Distribution
Karim Abadir
University of York, UK
Jan Magnus
Tilburg University, The Netherlands

Let \(x_1, \ldots, x_n \) be a random sample from Student’s \(t(\nu) \) distribution, where \(\nu \in \mathbb{R}_+ \). Investigate whether \(z_n := \sum_{i=1}^n x_i / \lambda_n \) is asymptotically \(N(0,1) \) for a suitable choice of \(\lambda_n \).

03.6.2. Unbiasedness of the OLS Estimator with Random Regressors
Michael Jansson
UC Berkeley

Consider the linear regression model
\[y = X\beta + u, \]
where \(X \) is an \(n \times k \) matrix of random regressors, \(u \) is an \(n \)-vector of error terms, and \(\beta \) is a \(k \)-vector of parameters. Suppose \(X \) has full column rank with probability one. It is a standard textbook claim that the ordinary least squares (OLS) estimator \(\hat{\beta} = (X'X)^{-1}X'y \) of \(\beta \) is unbiased if \(E(u|X) \overset{a.s.}{=} 0 \), where \(a.s. \) signifies almost sure equality. Specifically, it is claimed that unbiasedness follows from the law of iterated expectations and the relation \(E(\hat{\beta}|X) \overset{a.s.}{=} \beta + (X'X)^{-1}X'E(u|X). \) As it turns out, this argument is flawed.

(a) Show by example that \(E(u|X) \overset{a.s.}{=} 0 \) does not imply existence of \(E(\hat{\beta}) \).
(b) Provide stronger conditions under which \(E(\hat{\beta}) \) exists (and equals \(\beta \)).

SOLUTIONS

02.6.1. Oblique Projectors\(^1\) — Solution
Götz Trenkler (the poser of the problem)
University of Dortmund, Germany

It is well known that an oblique projector \(P \) can be written as
\[P = U \begin{pmatrix} I_r & K \\ 0 & 0 \end{pmatrix} U^*, \]
Solution

03.6.1 The Central Limit Theorem for Student’s Distribution—Solution

Karim Abadir
University of York, UK

Jan Magnus (the poser of the problem)
Tilburg University, The Netherlands

Consider the Lindeberg–Feller central limit theorem (CLT), which we state as follows. Let \(\{x_n\} \) be a sequence of independent random variables with means \(\{\mu_n\} \) and nonzero variances \(\{\sigma_n^2\} \) (both existing), and c.d.f.s \(\{F_n\} \). Define \(\lambda_n > 0 \) by \(\lambda_n^2 = \sum_{i=1}^{n} \sigma_i^2 \). Then, Lindeberg’s condition

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \int_{|u-\mu_i|\geq \lambda_n \epsilon} \left(\frac{u-\mu_i}{\lambda_n} \right)^2 dF_i(u) = 0, \quad \forall \epsilon > 0,
\]

is equivalent to

\[
z_n := \frac{\sum_{i=1}^{n} (x_i - \mu_i)}{\lambda_n} \overset{d}{\sim} N(0,1) \quad \text{and} \quad \lim_{n \to \infty} \max_{1 \leq i \leq n} \Pr \left(\left| \frac{x_i - \mu_i}{\lambda_n} \right| \geq \epsilon \right) = 0,
\]

where the latter limit is known as the uniform asymptotic negligibility (u.a.n.) condition. One can usually interpret \(\lambda_n^2 \) as the variance of the numerator of \(z_n \). We shall see, however, that there are cases where asymptotic normality holds in spite of \(\{x_n\} \) having infinite variances.

Let \(\{x_n\} \) be a random sample from Student’s t(\(\nu \)). For \(\nu < 2 \), no \(\lambda_n \) exists that can lead to \(z_n := \sum_{i=1}^{n} x_i / \lambda_n \overset{d}{\sim} N(0,1) \). This is because the tails of the density of t(\(\nu \)) decay at a rate of \(u^{-\nu-1} \) and the stable limit theorem tells us that a nonnormal stable law arises if the tails of the p.d.f. of \(x_i \) decay at a rate of \(u^{-a} \) where \(a < 3 \); e.g., see Loève (1977, §25) or Hoffmann-Jørgensen (1994, §5.25). For example, for \(\nu = 1 \), the average of standard Cauchy variates is standard Cauchy too, so that there exists no \(\lambda_n \) achieving asymptotic normality of \(z_n \).

For \(\nu > 2 \), both the mean and the variance exist, and the Lindeberg–Feller CLT applies, with \(\lambda_n^2 = n \text{var}(x_i) \). The interesting part is \(\nu = 2 \), where we will show that asymptotic normality of \(z_n \) holds, in spite of \(\text{var}(x_i) \) being infinite, and we will derive the appropriate \(\lambda_n \). We will require the additional assump-

© 2004 Cambridge University Press 0266-4666/04 $12.00 1261
tion that $\lambda_n^2 \to \infty$ as $n \to \infty$. In the standard CLT, this assumption was unnecessary, as it followed from $\lambda_n^2 = n \text{var}(x_i)$. We will see subsequently that λ_n^2 can be interpreted in terms of truncated variances for $\nu = 2$.

To prove the asymptotic normality of z_n, we need to show that the characteristic function $\varphi(t) := E(\exp(itx_i))$ satisfies

$$\lim_{n \to \infty} n \log \left(\frac{t}{\lambda_n} \right) = -\frac{t^2}{2}$$

for some choice of λ_n, with $\lambda_n \to \infty$ as $n \to \infty$. Because the sequence $\{x_n\}$ is i.i.d., the uniform asymptotic negligibility condition

$$\lim_{n \to \infty} \max_{1 \leq i \leq n} \Pr\left(\frac{|x_i|}{\lambda_n} \geq \epsilon \right) = 0$$

is satisfied for all $\epsilon > 0$, thus implying

$$\lim_{n \to \infty} \left| \varphi\left(\frac{t}{\lambda_n} \right) - 1 \right| = 0.$$

This allows us to take the leading term of the logarithmic expansion of the left-hand side of (1) as

$$\lim_{n \to \infty} n \log \varphi\left(\frac{t}{\lambda_n} \right) = \lim_{n \to \infty} n \left(\varphi\left(\frac{t}{\lambda_n} \right) - 1 \right)$$

$$= -\frac{t^2}{2} \lim_{n \to \infty} n \int_{|u| < \lambda_n \epsilon} \frac{u^2}{\lambda_n^2} \text{d}F(u), \quad \lambda_n \to \infty,$$

where the linear term in t drops out because the sequence $\{x_n\}$ is centered around zero. Asymptotic standard-normality obtains if we can find the appropriate λ_n^2 that makes the latter limit equal to 1 for all $\epsilon > 0$. Notice that this limit is the complement of Lindeberg’s condition, where $\sum_{i=1}^{n}$ is replaced by n because $\{x_n\}$ is an i.i.d. sequence.

From Student’s $t(2)$ density,

$$\int_{-\sqrt{2}}^{\sqrt{2}} \frac{u^2}{\sqrt{8} \left(1 + \frac{u^2}{2} \right)^{3/2}} \text{d}u = 2 \log(\sqrt{1 + c^2} + c) - \frac{2c}{\sqrt{1 + c^2}}$$

$$= 2 \sinh^{-1}(c) - \frac{2c}{\sqrt{1 + c^2}}$$
tends to infinity as $c \rightarrow \infty$. We need to solve

$$1 = \lim_{n \to \infty} \frac{n}{\lambda_n^2} \int_{|u| < \lambda_n e} u^2 \, dF(u) = \lim_{n \to \infty} \frac{2n \sinh^{-1}(\lambda_n e/\sqrt{2})}{\lambda_n^2}$$

where we have dropped $2c/\sqrt{1+c^2} \rightarrow 2$ that is dominated by $\sinh^{-1}(c) \rightarrow \infty$. By using the logarithmic representation of the latter and simplifying,

$$1 = \lim_{n \to \infty} \frac{2n \log(\lambda_n)}{\lambda_n^2}$$

is solved by $\lambda_n = \sqrt{n \log(n)}$ or any other function that is asymptotically equivalent to it (such as $\sqrt{n \log(n) + \sqrt{n}}$). Therefore,

$$z_n = \frac{1}{\sqrt{n \log(n)}} \sum_{i=1}^n x_i \overset{a}{\sim} N(0,1).$$

REFERENCES

03.6.2. Unbiasedness of the OLS Estimator with Random Regressors—Solution

Michael Jansson (theposer of the problem)

University of California, Berkeley

(a) Suppose $n = 1$ and let X and u be independent standard normal variates. Then X is nonzero with probability one and $E(u|X) \overset{a.s.}{=} 0$, but $E(\hat{\beta}) = \infty$ because the distribution of $\hat{\beta} - \beta = u/X$ is Cauchy.

(b) The matrix X has full column rank with probability one if and only if

$$\Pr[\lambda_{\min}(X'X) > 0] = 1,$$

where $\lambda_{\min}(\cdot)$ denotes the minimal eigenvalue of the argument.

$E(\hat{\beta})$ exists if (and only if) $E[c'(\hat{\beta} - \beta)] < \infty$ for any k-vector c with $c'c = 1$. In the sequel, let c be an arbitrary k-vector with unit length. Now,

$$|c'(\hat{\beta} - \beta)| = |c'(X'X)^{-1}X'u| \leq \sqrt{c'(X'X)^{-1}c\sqrt{u'u}} \leq \sqrt{\lambda_{\min}^{-1}(X'X)} \sqrt{u'u},$$

where the first inequality uses the Cauchy–Schwarz inequality and the second inequality uses Magnus and Neudecker (1988), Theorem 11.4.

If X and u are independent, $E(u|X) \overset{a.s.}{=} 0$, and

$$E[\lambda_{\min}^{-1/2}(X'X)] < \infty,$$

(3)