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a b s t r a c t

Parameter estimation under model uncertainty is a difficult and fundamental issue in econometrics.
This paper compares the performance of various model averaging techniques. In particular, it contrasts
Bayesianmodel averaging (BMA)— currently one of the standardmethods used in growth empirics—with
a newmethod calledweighted-average least squares (WALS). The newmethod has twomajor advantages
over BMA: its computational burden is trivial and it is based on a transparent definition of prior ignorance.
The theory is applied to and sheds new light on growth empiricswhere a high degree ofmodel uncertainty
is typically present.
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1. Introduction

This paper has two purposes. First, it introduces a new model
averaging technique, called weighted-average least squares (here-
after WALS), which we claim to be theoretically and practically
superior to standard Bayesian model averaging (BMA). It is theo-
retically superior because it treats our ignorance about the priors
in a different manner, thereby obtaining a better risk profile and,
in particular, avoiding unbounded risk. It is practically superior be-
cause the space overwhichwe need to performmodel selection in-
creases linearly rather than exponentially in size. Thus, if we have
sixty regressors to search over (which is not unusual in the growth
literature), then computing time of standard BMA is of the order
260, while computing time of WALS is of the order 60. This means
that whatWALS can do in one second, BMA can only do in six hun-
dred million years. Exact computation of a complete BMA is there-
fore rarely done; instead someMarkov chain Monte Carlo (MCMC)
method is typically applied.
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The second purpose is to contribute to the debate on growth
empirics. Since the seminal studies of Kormendi and Meguire
(1985) and Barro (1991), empirical research on the determinants
of economic growth has identified numerous variables as being
robustly (partially) correlated with productivity growth in an
economy. Durlauf et al. (2005) list 145 potential right-hand side
variables for growth regressions and cluster them into more
than forty areas (or theories), such as human capital, finance,
government, and trade. Taking into account the limited number
of observations available at a national level, growth empirics has
been heavily criticized because of the inherent model uncertainty;
see Durlauf et al. (2005) for a recent in-depth survey.
Sometimes growth theory can support choices of specific

variables, but the inclusion or exclusion of most variables is
typically arbitrary, a phenomenon labeled the ‘open-endedness’
of growth theory (Brock and Durlauf, 2001). In addition, while
theory may provide general qualitative variables (such as human
capital), it does not tell us how these variables are to be specified
or measured. We are thus faced with (at least) two types of
uncertainty, each of which brings about model uncertainty. Since
there exist a wide set of possible model specifications, we
often obtain contradictory conclusions. To make matters worse,
estimation results are often not robust to small changes in
model specification, making credible interpretations of the results
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hazardous. A proper treatment of model uncertainty is clearly
important.
One such treatment ismodel averaging,where the aimof the in-

vestigator is not to find the best possible model, but rather to find
the best possible estimates. Each model contributes information
about the parameters of interest, and all these pieces of informa-
tion are combined taking into account the trust we have in each
model, based on our prior beliefs and on the data.
In a sense, all estimation procedures are model averaging

algorithms, although possibly extreme or limiting cases. Our
framework is the linear regression model

y = X1β1 + X2β2 + ε = Xβ + ε, ε ∼ N(0, σ 2), (1)

where y (n × 1) is the vector of observations, X1 (n × k1) and
X2 (n × k2) are matrices of nonrandom regressors, ε is a random
vector of unobservable disturbances, and β1 and β2 are unknown
parameter vectors. We assume that k1 ≥ 1, k2 ≥ 0, k := k1+ k2 ≤
n − 1, that X := (X1 : X2) has full column-rank, and that the
disturbances (ε1, . . . , εn) are i.i.d. N(0, σ 2).
The reason for distinguishing between X1 and X2 is that X1

contains explanatory variables which we want in the model on
theoretical or other grounds (irrespective of the found t-ratios
of the β1-parameters), while X2 contains additional explanatory
variables of which we are less certain. The columns of X1 are called
‘focus’ regressors, and the columns of X2 ‘auxiliary’ regressors. 1
There are k2 components of β2, and a different model arises

whenever a different subset of theβ2’s is set equal to zero. If k2 = 0,
then no model selection takes place. If k2 = 1, then there are
twomodels to consider: the unrestricted and the restrictedmodel.
If k2 = 2, there are four models: the unrestricted, two partially
restricted (where one of the two β2’s is zero), and the restricted
model. In general, there are 2k2 models to consider. We denote the
ith model byMi, which we write as

y = X1β1 + X2iβ2i + ε,

where X2i denotes an n × k2i matrix containing a subset of k2i
columns of X2, and β2i denotes the corresponding k2i×1 subvector
of β2. We have of course 0 ≤ k2i ≤ k2.
Model averaging estimation proceeds in two steps. In the first

step we ask how to estimate the parameters, conditional upon a
selected model. In the second step we compute the estimator as
a weighted average of these conditional estimators. There exist
both Bayesian and non-Bayesian ideas about how to estimate and
how to find the weights. Our emphasis will be on the Bayesian
framework; for the non-Bayesian approach, see Claeskens and
Hjort (2003), Hjort and Claeskens (2003), Hansen (2007), and Liang
et al. (2008).
The unrestricted estimator simply sets the weight for the

unrestricted model (no restrictions on β1 or β2) to one and
performs a single estimation. Similarly, the restricted estimator
sets β2 to zero and estimates the resulting restricted model. Both
estimators are, admittedly trivial, examples of a model averaging
procedure. More interesting, and more common, are general-
to-specific (GtS) estimators which do involve a model selection
procedure, typically based on the ‘significance’ of parameters
through their t-ratios. There are many problems with this
procedure (see e.g. Magnus, 1999), but the most important is that

1 Maybe Leamer (1978, p. 194) was the first to categorize variables into two
classes, which he called ‘focus’ and ‘doubtful’, so that the focus variables are always
in the model, while the doubtful variables can be combined in an arbitrary linear
manner, a special case of which is exclusion. Later Leamer (1985, p. 309) preferred
the use of ‘free’ instead of ‘focus’, because it is not always the case that the focus
variables are the focus of a study — they are just the variables that are always in the
equation.
the model selection procedure is completely separated from the
estimation procedure. What is reported are therefore conditional
estimates, but the researcher acts as if they are unconditional
estimates. This problem is known as pretesting.
In order to combine model selection and estimation, the

Bayesian method offers a natural framework. The basic equations
of BMA were first presented by Leamer (1978, Sections 4.4–4.6),
who proposed Bayesian averaging of Bayesian estimates. In the
context of growth econometrics, BMA was first applied by
Fernández et al. (2001a) and Brock and Durlauf (2001). BMA
is flexible with respect to the size and exact specification of a
model and it does not require the a priori selection of any model.
Inference is based on a weighted average over all models. The idea
of Bayesian averaging of classical estimates was first proposed in
Raftery (1995) and later by Sala-i-Martin et al. (2004). In growth
econometrics, BMA has proved useful, and recent applications
include León-González and Montolio (2004), Sala-i-Martin et al.
(2004) and Masanjala and Papageorgiou (2007). Recently, interest
is growing in different aspects of growth empirics, such as
nonlinearities, parameter heterogeneity, and endogeneity. BMA
is also applied in other areas of economics; see for example
Tsangarides et al. (2004), Crespo-Cuaresma and Doppelhofer
(2007), Eicher et al. (2007a,c), Masanjala and Papageorgiou (2008)
and Prüfer and Tondl (2008). In short, BMA has become an
important technique.
There are, however, two major problems with BMA. First, the

computational burden is very substantial. In fact, it is usually
impossible to get exact BMA estimates, in which case some
MCMCmethodmust be applied, of which theMetropolis–Hastings
algorithm is the most common. Second, Bayesian techniques work
well when prior information is available, in which case they
guide us as to how this information should be combined with
information from the data. But when no prior information is
available and nevertheless informative priors need to be specified
(as is the case with BMA), then we need to reflect on the meaning
and impact of these priors.
In addition to these two problems, there are some further

uncomfortable aspects to BMA. One is that BMA takes different
priors for the same parameter depending on which submodel is
considered. This was also noted by Hjort and Claeskens (2003), and
it is a little difficult to interpret. Another uncomfortable aspect is
that — since exact BMA is computationally so demanding — it is
very difficult to consider extensions, for example to nonspherical
disturbances.2

Our proposedWALS method deals with all these problems. The
computational burden is trivial, and the proposedprior is attractive
because it is ‘neutral’ (mimicking ignorance) and also near-optimal
in the sense of minimizing some risk or regret criterion (Magnus,
2002). It is based on the equivalence theorem of Magnus and
Durbin (1999) and Danilov and Magnus (2004), and was originally
developed to better understand pretesting.
The concept and treatment of ignorance is essential in both BMA

and WALS. Suppose for simplicity that k2 = 1 in (1), so that there
is only one auxiliary regressor x2 and only one auxiliary parameter
β2, and we have y = X1β1 + β2x2 + ε with ε ∼ N(0, σ 2).
It is well-known that if we delete the auxiliary variable x2 from
our regression equation, then R2 will always decrease, but R̄2 (the
adjusted R2) will decrease if, and only if, the t-ratio of the auxiliary

2 See, however, Doppelhofer and Weeks (2008) who study the robustness of
BMAwith respect to outliers and heteroskedasticity in the context of cross-country
growth regressions. Magnus et al. (2009) extend WALS estimation to nonspherical
disturbances.
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parameter is smaller than one in absolute value. It is also well-
known (Magnus and Durbin, 1999, Theorem 1) that if we define
the ‘theoretical’ t-ratio

η :=
β2

σ/
√
x′2M1x2

, M1 := In − X1(X ′1X1)
−1X ′1,

then MSE(β̂1r) ≤ MSE(β̂1u) if, and only if, |η| ≤ 1, where β̂1r
and β̂1u denote the restricted (with β2 = 0) and unrestricted
estimator of β1 respectively. Hence we shall say that we are
‘ignorant’ (or ‘neutral’) about the auxiliary parameter β2 when
(a) we do not know whether β2 is positive or negative, and (b)
we do not know whether including the corresponding auxiliary
regressor x2 will increase or decrease the mean squared error of
the estimated focus parameter β1. More formally, we choose the
prior distribution in WALS such that the prior median of η is zero
and the prior median of η2 is one. This treatment of ignorance
is further elaborated on and defended in Magnus (2002), and it
is close to the idea in Masanjala and Papageorgiou (2008), who
state that a posterior inclusion probability of 0.50 corresponds
approximately to an absolute t-ratio of one. The proposed priors
forWALS are taken from the Laplace distribution and thus generate
bounded risk, in contrast to the normal prior adopted by BMA
which generates unbounded risk. Fig. 1 in Section 3.4 illustrates
this essential difference.
In this paper we confront BMA with WALS, and apply both

techniques to shed further light on the determinants of economic
growth. In our growth estimations we use a set-up which allows
us to distinguish between standard Solow growth determinants
and determinants that have been suggested in the so-called ‘new
growth’ theories. Based on these analyses, we can not only draw
conclusions on the most appropriate model averaging technique
but also provide insights on the impacts of frequently used growth
determinants.
The paper is organized as follows. The two main model

averaging techniques are described in Sections 2 (BMA) and 3
(WALS). In Section 2 we extend the standard BMA theory to allow
for the case where model selection takes place over a subset
of the regressors. In Section 3 we extend the theory of WALS
(developed in the context of pretesting), so that it can be used
as a general model averaging technique. Sections 4–6 present the
growth estimation set-up and results, and Section 7 concludes. An
Appendix contains a description and justification of our data and
selected variables.

2. Bayesian model averaging (BMA)

The usual set-up for Bayesian model averaging is the special
case of (1) where k1 = 1 and X1 = ı (the vector of ones), so that the
constant term is present in all models and model selection takes
place over all regressors except the constant term. Our treatment
is more general and allows model selection to take place over
a subset (X2) of the regressors, while the focus regressors (the
columns of X1) are forced to be present in every model.
A very large literature exists on BMA, some of which is men-

tioned in the introduction. Useful literature summaries can be
found in Raftery et al. (1997) and Hoeting et al. (1999).

2.1. Prior, likelihood, and posterior in modelMi

Assuming thatMi is the true model, the likelihood is given by

p(y | β1, β2i, σ 2,Mi) ∝ (σ
2)−n/2 exp−

Si
2σ 2

, (2)

where Si := (y − X1β1 − X2iβ2i)′(y − X1β1 − X2iβ2i). Following
standard Bayesian theory of the normal linear model (O’Hagan,
1994, Chapter 9), we impose the conventional improper prior
distribution p(σ 2|Mi) ∝ σ

−2 togetherwith a partially proper prior
on β1, β2i|σ 2,Mi:

p(β1 | σ 2,Mi) ∝ 1, β2i | β1, σ
2,Mi ∼ N(0, σ 2V0i),

where V0i is a positive definite k2i× k2i matrix to be specified later.
The joint prior distribution is then

p(β1, β2i, σ 2 |Mi) ∝ (σ
2)−(k2i+2)/2 exp−

β ′2iV
−1
0i β2i

2σ 2
. (3)

To deal with partially proper (informative), partially improper
(noninformative) priors is no trivial matter; see Bauwens et al.
(1999, pp. 117–118). Our approachwill be to think of the improper
prior distribution as a special case of the following proper prior
distribution:

p(β1, β2i, σ 2 |Mi) ∝ (σ
2)−(d0+k1+k2i+2)/2

× exp−
h0β ′1β1 + β

′

2iV
−1
0i β2i + a0

2σ 2
, (4)

where the special case (3) occurs when h0 = 0, a0 = 0, and d0 =
−k1.3
Combining the prior (4) with the likelihood (2) gives the posterior

p(β1, β2i, σ 2 | y,Mi) ∝ (σ
2)−(d+k1+k2i+2)/2 exp−

Ri + ai
2σ 2

, (5)

where d = d0 + n,

Ri :=
(
β1 − b1i
β2i − b2i

)′
V−1i

(
β1 − b1i
β2i − b2i

)
,

V−1i :=
(
X ′1X1 + h0Ik1 X ′1X2i
X ′2iX1 X ′2iX2i + V

−1
0i

)
,(

b1i
b2i

)
:= Vi(X1 : X2i)′y,

and

ai := a0 + y′y− y′(X1 : X2i)Vi(X1 : X2i)′y.

Hence the posterior density of β1, β2i, and σ 2 — given the data y
and model Mi — is the familiar normal-inverse-gamma distribu-
tion with parameters ai, d, (b1i, b2i), and Vi.
A little algebra gives

Vi =
(
(X ′1X1 + h0Ik1)

−1
+ QiV2iQ ′i −QiV2i

−V2iQ ′i V2i

)
, (6)

where

V−12i = V
−1
0i + X

′

2iM
∗

1X2i, M∗1 = In − X1(X
′

1X1 + h0Ik1)
−1X ′1,

and

Qi = (X ′1X1 + h0Ik1)
−1X ′1X2i.

From (6) we find

(X1 : X2i)Vi(X1 : X2i)′ = I −M∗1 +M
∗

1X2iV2iX
′

2iM
∗

1 ,

so that we can rewrite ai as

ai = a0 + y′y− y′(X1 : X2i)Vi(X1 : X2i)′y
= a0 + y′(M∗1 −M

∗

1X2iV2iX
′

2iM
∗

1 )y.

3 Whenever priors are used the question of sensitivity of the posterior moments
to the priors is important. We do not examine this issue here. Recent examples of
such prior robustness checks for BMA include Ley and Steel (2009) and Eicher et al.
(2007b).
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We now specialize to the improper prior given in (3) by setting
h0 = 0, a0 = 0, and d0 = −k1. The matrix M∗1 then specializes
to the idempotent matrix M1 := In − X1(X ′1X1)

−1X ′1, and we have
ai = (M1y)′Ai(M1y), where Ai := M1 − M1X2iV2iX ′2iM1. We notice
that ai is a function of M1y only and does not depend on X ′1y. It
follows that

E(β1 | y,Mi) = b1i = (X ′1X1)
−1X ′1(y− X2ib2i), (7)

E(β2i | y,Mi) = b2i = (V−10i + X
′

2iM1X2i)
−1X ′2iM1y, (8)

and, when n > k1 + 2,

var(β1 | y,Mi) =
ai

n− k1 − 2
((X ′1X1)

−1
+ QiV2iQ ′i ), (9)

var(β2i | y,Mi) =
ai

n− k1 − 2
V2i. (10)

2.2. Marginal likelihood of modelMi

In order to find the marginal likelihood we return to the proper
prior (4). Since |Vi| = |X ′1X1+h0Ik1 |

−1
·|V2i|, we obtain themarginal

density of y in modelMi as

p(y |Mi) =

∫ ∫ ∫
p(y | β1, β2i, σ 2,Mi) p(β1, β2i, σ 2 |Mi)

× dβ1 dβ2i dσ 2

=
π−n/2hk1/20 ad0/20 0(d/2)
|X ′1X1 + h0Ik1 |1/2 0(d0/2)

·
|V−10i |

1/2

|V−12i |1/2
· a−d/2i

= c · |V−12i |
−1/2
|V−10i |

1/2a−d/2i ,

where c is a normalizing constant which does not depend on i or y.
Now specializing to the improper prior (3) by setting h0 = 0,

a0 = 0, and d0 = −k1, we find

p(y |Mi) = c ·
|V−10i |

1/2

|V−10i + X
′

2iM1X2i|1/2
· (y′M1AiM1y)−(n−k1)/2, (11)

where

Ai := M1 −M1X2i
(
V−10i + X

′

2iM1X2i
)−1
X ′2iM1

and M1 = In − X1(X ′1X1)
−1X ′1. If we let p(Mi) denote the prior

probability that Mi is the true model, and λi := p(Mi|y) the
posterior probability for modelMi, then

λi =
p(Mi)p(y |Mi)∑
j
p(Mj)p(y |Mj)

(i = 1, . . . , 2k2),

We shall assign equal prior probability to each model under
consideration. This seems to be in line with the standard literature
on BMA, although it is notwithout criticism and alternative choices
for p(Mi) have been proposed. Many researchers feel that simpler
models should be preferred to more complex ones, all else being
equal. Durlauf et al. (2005), on the other hand, find the idea of
promoting parsimonious models through the priors unappealing.
Brock and Durlauf (2001) raise objections against uniform priors
on the model space because of the implicit assumption that the
probability that one regressor appears in themodel is independent
of the inclusion of others, whereas, in fact, regressors are typically
correlated. They suggest a hierarchical structure for the model
prior. This, however, requires agreement on which regressors are
proxies for the same theories. As stated in Eicher et al. (2007b),
such an agreement is usually not within reach and, therefore,
independent model priors seem a reasonable compromise. Thus
motivated we write
p(Mi) = 2−k2 .
Then λi = p(y | Mi), where the normalizing constant c is chosen
such that

∑
i λi = 1.
2.3. Model averaging

So far we have conditioned on one model, namely modelMi. In
the Bayesian framework it is now easy to consider allmodels in our
assumed model spaceM := {Mi, i = 1, . . . , 2k2}, by writing the
posterior distribution of our parameters β1, β2, and σ 2 given the
data y as

p(β1, β2, σ 2 | y) =
2k2∑
i=1

λi p(β1, β2i, σ 2 | y,Mi). (12)

This is aweighted average of the posterior distributions under each
model, weighted by the corresponding posterior model probabili-
ties.
The posterior mean and variance of β1 are

b1 := E(β1 | y) =
∑
i

λib1i, (13)

and

var(β1 | y) =
∑
i

λi
(
V ∗1i + b1ib

′

1i

)
− b1b′1, (14)

where b1i := E(β1 | y,Mi) and V ∗1i := var(β1 | y,Mi); see Raftery
(1993) and Draper (1995).
To obtain the corresponding results for β2 we introduce the

k2 × k2i selection matrices Ti with full column-rank, so that T ′i =
(Ik2i : 0) or a column-permutation thereof, and Tiβ2i is the k2 × 1
vector obtained from β2 by setting the components not included in
Mi to zero. The posterior mean and variance of β2 are then

b2 := E(β2 | y) =
∑
i

λiTib2i, (15)

and

var(β2 | y) =
∑
i

λiTi
(
V ∗2i + b2ib

′

2i

)
T ′i − b2b

′

2, (16)

where b2i := E(β2i | y,Mi) and V ∗2i := var(β2i | y,Mi).

2.4. Implementation using g-priors

Following Zellner (1986) we assume that the prior variance V0i
is given by

V−10i = giX
′

2iM1X2i (gi > 0).

This gives

λi = c ·
(
gi
1+ gi

)k2i/2
(y′M1AiM1y)−(n−k1)/2,

where

Ai =
gi
1+ gi

M1 +
1

1+ gi
(M1 −M1X2i(X ′2iM1X2i)

−1X ′2iM1).

We have

b1i = (X ′1X1)
−1X ′1(y− X2ib2i),

b2i =
1

1+ gi
(X ′2iM1X2i)

−1X ′2iM1y.

Also, when n > k1+ 2 and defining s2i := y
′M1AiM1y/(n− k1− 2),

we find

V ∗1i = s
2
i (X
′

1X1)
−1
+ (X ′1X1)

−1X ′1X2iV
∗

2iX
′

2iX1(X
′

1X1)
−1,

V ∗2i =
s2i
1+ gi

(X ′2iM1X2i)
−1.
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Our final ingredient is the specification of gi. We follow Fernández
et al. (2001b) and choose

gi :=
1

max(n, k22)
,

where we note that gi is the same for all i. One alternative would
have been gi := 1/n, the so-called ‘unit information prior’ (Raftery,
1995), recently advocated by Eicher et al. (2007b) and Masanjala
and Papageorgiou (2008). In our case with n = 74 and k2 = 4, 9,
or 12, the difference between the two priors is negligible.
The above results now allow us to calculate the BMA estimates

and precisions of β1 and β2 from (13)–(16). Special cases arise and
some care is required when k2 = 0 (no model selection) or k1 = 0
(model selection takes place over all regressors). Our Matlab pro-
gram, downloadable from http://center.uvt.nl/staff/magnus/wals,
allows for these special cases.

3. Weighted-average least squares (WALS)

3.1. Orthogonalization

Weighted-average least-squares estimation starts with the
realization that we can ‘orthogonalize’ the columns of X2 such that
X ′2M1X2 = Ik2 , where we recall that M1 := In − X1(X

′

1X1)
−1X ′1.

More precisely, if we let P be an orthogonal k2 × k2 matrix
such that P ′X ′2M1X2P = 3 (diagonal), and define new auxiliary
regressors X∗2 := X2P3

−1/2 and new auxiliary parameters β∗2 =
31/2P ′β2, then X∗2β

∗

2 = X2β2 and X
∗

2
′M1X∗2 = Ik2 . There are major

advantages in working with X∗2 and β
∗

2 instead of X2 and β2, as
will become clear shortly. Hence, we shall initially assume that this
orthogonalization has taken place.

Assumption 1. X ′2M1X2 = Ik2 .

Assumption 1 thus requires that the columns x21, . . . , x2k2 of X2
(the auxiliary regressors) are ‘orthogonal’ in the sense that M1x2i
and M1x2j are orthogonal for every i 6= j. This will not affect
the interpretation of the β1-coefficients, but it will change the
interpretation of the β2-coefficients. However, we can always
recover β2 from β2 = P3−1/2β∗2 .

3.2. Restricted least squares

Given Assumption 1, the least-squares (LS) estimators of β1 and
β2 in the unrestricted model (1) are

β̂1 = β̂1r − Q β̂2, β̂2 = X ′2M1y,

where β̂1r := (X ′1X1)
−1X ′1y and Q := (X

′

1X1)
−1X ′1X2. The subscript

‘r ’ denotes ‘restricted’ (with β2 = 0). We see that β̂2 ∼ N(β2,
σ 2Ik2).
Let Si be an k2 × (k2 − k2i) selection matrix with full column-

rank, where 0 ≤ k2i ≤ k2, so that S ′i = (Ik2−k2i : 0) or a
column-permutation thereof. We are interested in the restricted
LS estimators of β1 and β2, the restriction being S ′iβ2 = 0. Let
Mi denote the linear model (1) under the restriction S ′iβ2 = 0,
and denote the LS estimators of β1 and β2 in modelMi by β̂1i and
β̂2i. Following Danilov and Magnus (2004, Lemmas A1 an A2), the
restricted LS estimators of β1 and β2 are given by

β̂1i = β̂1r − QWiβ̂2, β̂2i = Wiβ̂2, (17)

whereWi := Ik2−SiS
′

i is a diagonal k2×k2matrix with k2i ones and
(k2− k2i) zeros on the diagonal, such that the jth diagonal element
of Wi is zero if β2j is restricted to be zero, and one otherwise. (If
k2i = k2 thenWi := Ik2 .) The joint distribution of β̂1i and β̂2i is then(
β̂1i

β̂2i

)
∼ Nk

((
β1 + QSiS ′iβ2
Wiβ2

)
,

σ 2
(
(X ′1X1)

−1
+ QWiQ ′ −QWi

−WiQ ′ Wi

))
,

the residual vector ei := y − X1β̂1i − X2β̂2i is given by ei = Diy,
where Di := M1−M1X2WiX ′2M1 is a symmetric idempotent matrix
of rank n− k1− k2i, and the distribution of s2i := e

′

iei/(n− k1− k2i)
is

(n− k1 − k2i)s2i
σ 2

∼ χ2
(
n− k1 − k2i,

β ′2SiS
′

iβ2

σ 2

)
.

It follows that:

• all models which include x2j as a regressor will have the same
estimator of β2j, namely β̂2j, irrespective which other β2’s are
estimated;
• the estimators β̂21, β̂22, . . . , β̂2k2 are independent;
• if σ 2 is known or is estimated by s2 (the LS estimator in the
unrestricted model), then all models which include x2j as a
regressor yield the same t-ratio of β2j.

3.3. The equivalence theorem

We now define the WALS estimator of β1 as

b1 =
2k2∑
i=1

λiβ̂1i, (18)

where the sum is taken over all 2k2 different models obtained by
setting a subset of the β2’s equal to zero, and the λi are weight-
functions satisfying certain minimal regularity conditions, namely

λi ≥ 0,
∑
i

λi = 1, λi = λi(M1y). (19)

The WALS estimator can then be written as b1 = β̂1r − QW β̂2,
where W :=

∑
i λiWi. Notice that, while the Wi are nonrandom,

W is random. For example, when k2 = 2, we have four models
to compare: the restricted M0 (β21 = β22 = 0), the partially
restrictedM1 (β22 = 0) andM2 (β21 = 0), and the unrestricted
M12. The correspondingWi are

W0 =
(
0 0
0 0

)
, W1 =

(
1 0
0 0

)
,

W2 =
(
0 0
0 1

)
, W12 =

(
1 0
0 1

)
,

and hence

W =
(
λ1 + λ12 0
0 λ2 + λ12

)
,

where the weight-functions λi are now labeled λ0, λ1, λ2, λ12,
corresponding to the four modelsMi andmatricesWi. We see that
λ0 does not appear in thematrixW and thatW is diagonal because
of Assumption 1.
A few words about the regularity conditions are in order. If σ 2

is known, then most or all diagnostics will use statistics (such as t-
and F-statistics) which depend on β̂2 only. If σ 2 is not known and
estimated by s2, then all t- and F-statistics will depend on (β̂2, s2).
Now, it is a basic result in least-squares theory that s2 is indepen-
dent of (β̂1, β̂2). It follows that β̂1r is independent of s2. Hence, β̂1r

http://center.uvt.nl/staff/magnus/wals
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will be independent of (β̂2, s2). Finally, if σ 2 is not known and esti-
mated by s2i (the estimator of σ

2 in modelMi), then it is no longer
true that all t- and F-statistics depend only on (β̂2, s2). However,
they still depend only onM1y, because we have seen that both β̂2i
and the residuals ei frommodelMi are linear functions ofM1y. We
conclude that the regularity conditions on λi are reasonable and
mild.
The equivalence theorem proved in Danilov andMagnus (2004,

Theorem 1), generalizing an earlier result in Magnus and Durbin
(1999), states that if Assumption 1 holds and the regularity
conditions (19) on λi are satisfied, then

E(b1) = β1 − Q E(W β̂2 − β2),

var(b1) = σ 2(X ′1X1)
−1
+ Q var(W β̂2)Q ′,

and hence

MSE(b1) = σ 2(X ′1X1)
−1
+ QMSE(W β̂2)Q ′. (20)

The importance of the equivalence theorem lies in the fact that
the properties of the complicatedWALS estimator b1 of β1 depend
critically on the properties of the less complicated estimatorW β̂2
of β2. We notice that neither the bias, nor the variance or themean
squared error of b1 depend on β1. They do, however, depend on β2.
It follows from the equivalence theorem (from (20) in

particular) that the WALS estimator b1 will be a ‘good’ estimator
of β1 (in the mean squared error sense) if and only if W β̂2 is
a ‘good’ estimator of β2. Now, under Assumption 1, the matrix
W is diagonal, say W = diag(w1, . . . , wk2). Suppose that σ

2 is
known (we discuss the unknownσ 2 case later), and thatwe choose
wj = wj(β̂2j). Then, since the {β̂2j} are independent, so are the
{wjβ̂2j}, and our k2-dimensional problem reduces to k2 (identical)
one-dimensional problems: only using the information that β̂2j ∼
N(β2j, σ 2) and assuming that σ 2 is known, find the best (in the
mean squared error sense) estimator of β2j. The Laplace estimator
discussed below solves this problem.
Suppose β̃2j is the desired optimal estimator of β2j. Then, letting

β̃2 := (β̃21, . . . , β̃2k2)
′, the equivalence theorem directly gives us

the optimal WALS estimator

b1 = β̂1r − Q β̃2,

with

E(b1) = β1 − Q E(β̃2 − β2),

var(b1) = σ 2(X ′1X1)
−1
+ Q var(β̃2)Q ′.

From a computational point of view, it is important to note that the
number of required calculations is of order k2, even though there
are 2k2 models to consider. This is so because we do not need all
2k2 individualλ’s; only k2 linear combinations are required, namely
the diagonal elements ofW ; see Leamer (1978, p. 154) for a related
result in terms of principal components.

3.4. The Laplace estimator

Thus motivated, let x be a single observation from a univariate
normal distribution with mean η and variance one, that is, x ∼
N(η, 1). How to estimate η? This seemingly trivial question was
addressed in Magnus (2002). We consider five candidates (there
are more):

• the ‘usual’ estimator: t(x) = x
• the ‘silly’ estimator: t(x) = 0
• the pretest estimator:

t(x) =
{
0 if |x| ≤ c
x if |x| > c
Fig. 1. Five estimators t(x) of η when x ∼ N(η, 1).

• the ‘normal’ estimator: t(x) = x/(1+ c)
• the Laplace estimator defined below in (21),

where c is a (generic) nonnegative constant. The five estimators
are graphed in Fig. 1, where c = 1.96 for the pretest estimator,
c = 1/2.1981 for the ‘normal’ estimator, and c = log(2) for the
Laplace estimator.
The usual estimator is unbiased, admissible, and minimax. Its

risk R(η) := E(t(x) − η)2 = 1 has good properties when |η|
is large, but not when η is close to zero. The silly estimator
has excellent properties when η is close to zero, but its risk
R(η) = η2 increases without bound when |η| becomes large. The
pretest estimator has bounded risk, but it has a discontinuity and
is therefore inadmissible. Also, its risk is higher than either the
usual or the silly estimator when |η| is around one. The ‘normal’
estimator is a Bayesian estimator, combining the likelihood x|η ∼
N(η, 1) with a normal prior π(η) ∼ N(0, 1/c). (In Fig. 1 we take
1/c = 2.1981, so that Pr(|η| < 1) = 1/2.) This is — in essence
— the BMA estimator. The risk of the ‘normal’ estimator is also
unbounded. The Laplace estimator was developed as an estimator
which is admissible, has bounded risk, has good properties around
|η| = 1, and is near-optimal in terms of minimax regret. It is a
Bayesian estimator, based on the Laplace prior

π(η) =
c
2
exp(−c|η|).

The hyperparameter c is chosen c = log 2, because this implies
that the prior median of η is zero and the prior median of η2 is one,
which comes closest to our prior idea of ignorance as discussed in
the Introduction.
The moments of the posterior distribution of η|x are given in

Theorem 1, which extends Pericchi and Smith (1992) and Magnus
(2002).

Theorem 1. Consider the likelihood and prior

x|η ∼ N(η, 1), π(η) =
c
2
exp(−c|η|),

where c is a positive hyperparameter. Let Q (x, η) := (x−η)2+2c|η|.
Then the posterior distribution of η given x is given by

p(η | x) =
exp(−Q (x, η)/2)∫
exp(−Q (x, η)/2) dη

.



J.R. Magnus et al. / Journal of Econometrics 154 (2010) 139–153 145
The mean and variance of the posterior distribution are given by

E(η | x) =
1+ h(x)
2

(x− c)+
1− h(x)
2

(x+ c) (21)

and

var(η | x) = 1+ c2(1− h2(x))−
c(1+ h(x))φ(x− c)

8(x− c)
,

where

h(x) :=
e−cx8(x− c)− ecx8(−x− c)
e−cx8(x− c)+ ecx8(−x− c)

,

and φ(x) and 8(x) denote the density and cumulative distribution
function of the standard-normal distribution, respectively.

Proof. Writing

Q (x, η) =
{
(η − (x+ c))2 − 2cx− c2 if η ≤ 0,
(η − (x− c))2 + 2cx− c2 if η > 0,

and realizing that∫ x

−∞

tφ(t) dt = −φ(x),
∫ x

−∞

t2φ(t) dt = 8(x)− xφ(x),

the posterior distribution follows easily.
The moments are easy to compute. Note that the function h

is monotonically increasing with h(−∞) = −1, h(0) = 0, and
h(∞) = 1, and that h(−x) = −h(x). �

3.5. Implementation using Laplace priors

TheWALS estimation procedure can be summarized as follows.

• In the unrestricted model y = X1β1 + X2β2 + ε, determine
which are the focus regressors X1 and which are the auxiliary
regressors X2.
• Compute M1 := In − X1(X ′1X1)

−1X ′1, and then P (orthogonal)
and 3 (diagonal) such that P ′X ′2M1X2P = 3. Compute X∗2 :=
X2P3−1/2, so that X∗2

′M1X∗2 = Ik2 . Letting β
∗

2 := 3
1/2P ′β2, note

that X∗2β
∗

2 = X2β2.
• Compute β̂2

∗

= X∗2
′M1y.

• Let η := β∗2/σ . Assuming that σ
2 is known, compute η̂ :=

β̂2
∗

/σ . Notice that the components η̂1, . . . , η̂k2 of η̂ are
independent and that η̂j ∼ N(ηj, 1).
• For j = 1, . . . , k2 compute the Laplace estimator η̃j := E(ηj|η̂j)
and its variance ω2j := var(ηj|η̂j). Define η̃ := (η̃1, . . . , η̃k2)

′

and� := diag(ω21, . . . , ω
2
k2
).

• Since η = β∗2/σ = 31/2P ′β2/σ , we obtain β2 = σP3−1/2η,
and hence we compute the WALS estimators for β2 and β1 as

b2 = σP3−1/2η̃, b1 = (X ′1X1)
−1X ′1(y− X2b2).

• Letting Q := (X ′1X1)
−1X ′1X2, the variance of b2 and b1 is

var(b2) = σ 2P3−1/2�3−1/2P ′,

and

var(b1) = σ 2(X ′1X1)
−1
+ Q var(b2)Q ′.

We also have cov(b1, b2) = −Q var(b2). In standard applica-
tions one is primarily interested in the diagonal elements of the
variance matrices.

Finally, we note that we have assumed that σ 2 is known,
whereas in fact it is of course not known. Our solution to this prob-
lem is to replace σ 2 by s2, the estimate in the unrestricted model.
This is an approximation, but a very accurate one, as demonstrated
and exemplified by Danilov (2005).
3.6. BMA and WALS compared

It may seem at first glance that the two estimation procedures
BMAandWALS are quite different, but in fact they are conceptually
quite close. Both procedures are model averaging algorithms. The
assumption that the data are normally distributed is the same, and
the treatment of the focus parameters β1 and the error variance
σ 2 as noninformative priors is essentially the same. The difference
between BMA andWALS lies in the prior treatment of the auxiliary
parameters β2. In BMA we assume normality of the priors with

E(β2i |Mi) = 0, var(β2i |Mi) =
σ 2

g
(X ′2iM1X2i)

−1,

where g := 1/max(n, k22). Since β2i = T ′i β2, X2i = X2Ti, and
T ′i Ti = Ik2i , we can write these moments as

E(β2 |Mi) = 0, var(β2 |Mi) =
σ 2

g
Ti(T ′i X

′

2M1X2Ti)
−1T ′i . (22)

In contrast, in WALS we write β2 in terms of η as β2 = σP3−1/2η.
The k2 components of η are i.i.d. according to a Laplace distribution

π(ηi) =
c
2
exp(−c|ηi|), c = log 2.

This implies that each ηi is symmetrically distributed around
zero, that the median of η2i is one, and that the variance of ηi is
σ 2η = 2/c2. This choice of prior moments is based on our idea
of ignorance as a situation where we do not know whether the
theoretical t-ratio is larger or smaller than one in absolute value.
The prior moments of β2 are then given by

E(β2) = 0, var(β2) = σ 2σ 2η P3
−1P ′ =

σ 2

c2/2
(X ′2M1X2)

−1. (23)

Comparing (22) and (23) shows that these prior moments are in
fact closely related, and suggests in addition a new value for g in
BMA applications, namely g = c2/2 = 0.24.
The conceptual differences are thus the distribution (Laplace

versus normal), where Laplace has the advantage of leading to
finite risk; and the choice of g as a scaling parameter for the prior
variance.

4. Growth models

In the neoclassical growth model (Solow, 1956), growth
around a steady state is determined by rates of physical capital
accumulation, population growth, and exogenous technological
progress. The initial income of an economy is relevant for
its transition path as countries with a lower initial income
are expected to grow faster than richer countries. The ‘new
growth’ theories seek to explain also the previously exogenous
components of economic growth, which is why they are often
called ‘endogenous’ growth models. A frequently used empirical
model for growth regressions is the human capital-augmented
neoclassical model (Mankiw et al., 1992), which regresses the
average growth rate of GDP per capita on investment, the log of
initial GDP per capita, the population growth rate, and a human
capital variable.
The ‘Solow’ determinants derived from a neoclassical growth

model are sometimes called ‘proximate’ determinants because
they are thought to be the most established drivers of economic
growth. The term ‘proximate’ also reflects the ease with which
these determinants can be influenced by policy measures, thus
emphasizing their importance for empirical research and policy
advice. Recent literature advocates the view that these proximate
determinants in turn depend on slow-moving ‘fundamental’
growth determinants such as a country’s geography, the quality of
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its institutions, the degree of fractionalization in its society, and
its culture or religion; see Durlauf et al. (2008a) and references
therein. Hall and Jones (1999) use a similar framework in which
they distinguish between proximate causes of economic success
(capital accumulation and productivity) and a more fundamental
determinant which they name ‘social structure’. Accordingly,
one can distinguish between proximate and fundamental growth
theories (Durlauf et al., 2008b).
We seek to capture these different types of growth determi-

nants (theories) in our empirical analysis. Thus we define two
different sets of regressors, labeled X1 and X2, somewhat in the
spirit of Brock and Durlauf (2001) and Masanjala and Papageor-
giou (2008). The set X1 contains the regressors which appear in
every regression on theoretical or other grounds (irrespective of
their statistical significance), the so-called ‘focus’ regressors. Typi-
cally, but not necessarily,X1 contains the constant termas one of its
regressors. The additional controls in the regression, the so-called
‘auxiliary’ regressors, are contained in X2. Their primary role is to
improve the estimation of the focus regressors, although their es-
timates may be of independent interest. The distinction between
focus and auxiliary regressors is helpful when one wants to under-
stand the relationship between neoclassical and other new growth
determinants. While the Solow variables appear in many empiri-
cal studies, thus serving as a baseline for growth analysis, it is not
so clear which variables should be included as auxiliary regres-
sors. The proximate (Solow) determinants are the variables of ma-
jor interest in our analysis (X1) based on their prominent position
in growth theory and growth empirics. The fundamental growth
determinants mentioned above are included as an additional set
of regressors (X2) serving as controls of the standard growth mod-
els.4
We analyze two different model specifications: Model 1 and

Model 2. In the notion of Durlauf et al. (2008b), we interpret
Model 1 as a direct test of the proximate neoclassical growth theory
against the fundamental new growth theories of institutions,
geography, fractionalization, and religion. Model 2 deviates from
the proximate versus fundamental classification, and tests the
robustness of the endogenous growth model using the distinction
between focus and auxiliary regressors.
In both models the dependent variable is GROWTH. In our data

set, the average growth rate is 1.99% with a standard error 1.86.
The regressors and their role as either focus or auxiliary are given
in Table 1.
Model 1 contains six focus regressors (including the constant

term) and four auxiliary regressors. It is motivated by the neoclas-
sical growth model and thus contains all Solow determinants as
focus regressors (X1). These are: The initial capital stock of an econ-
omy (GDP60), measured as the log of GDP per capita in 1960. This
represents the so-called convergence term of the Solow growth
model and attempts to analyze whether poorer countries (those
having lower initial income) actually grow faster than richer ones.
Next, the 1960–1985 equipment investment share of GDP (EQUIP-
INV), which serves as a proxy for the stock of physical capital in
the economy and reflects the importance of capital accumulation
for the growth of an economy. Then two variables which represent
human capital. To capture different facets of human capital, we in-
clude a direct measure, the total gross enrollment rate in primary
schooling in 1960 (SCHOOL60), and also a proxy for noneducational

4 Our set-up is distantly related to the empirical study by Levine and Renelt
(1992) who include (as we do) a set of variables that appear in every regression.
They distinguish, however, between three sets of variables with the aim of finding
the widest range of coefficient estimates on the variables of interest that standard
hypothesis tests do not reject, thus assessing the robustness of partial correlations
between the per capita growth rate and various economic indicators.
Table 1
Model specifications, focus and auxiliary regressors.

Variable Model 1 Model 2 Mean SE

CONSTANT Focus Focus 1.0000 0.0000
GDP60 Focus Focus 7.5253 0.8612
EQUIPINV Focus Focus 0.0432 0.0344
SCHOOL60 Focus Focus 0.7807 0.2556
LIFE60 Focus Focus 56.0676 1.1566
DPOP Focus Auxiliary 0.0206 0.0100
LAW Auxiliary Focus 0.5518 0.3332
TROPICS Auxiliary Focus 0.5481 0.4709
AVELF Auxiliary Focus 0.2984 0.2797
CONFUC Auxiliary Focus 0.0185 0.0862
MINING – Auxiliary 0.0482 0.0792
PRIGHTS – Auxiliary 3.4551 1.9073
MALARIA – Auxiliary 0.2866 0.4036

human capital, the life expectancy at age zero, measured in 1960
(LIFE60). Both human capital variables are widely used proxies for
the initial human capital stock in an economy and are expected to
have a positive effect on productivity growth with life expectancy
being the more robust regressor (Sala-i-Martin, 1997). Whenever
possible, we use such initial values for our variables, reducing also
the potential endogeneity problem in our growth regressions. Fi-
nally, the population growth rate between 1960 and 1990 (DPOP),
a proxy for the exogenous growth rate of labor assumed to foster
productivity growth in the neoclassical model.
To test this neoclassical model (theory) and its proximate

growth determinants we include the suggested fundamental
growth determinants as auxiliary regressors. There is not only
theoretical but also empirical support for these regressors; see
Sala-i-Martin (1997), Fernández et al. (2001a) and Sala-i-Martin
et al. (2004).We specify the following set of four auxiliary variables
in X2. First, a rule of law index (LAW), a measure of the importance
of institutions, supposed to have a positive effect on economic
growth. Next, a country’s fraction of tropical area (TROPICS), which
controls for the effect of geography and is expected to have a
negative effect on productivity growth. Third, an average index
of ethnolinguistic fragmentation in a country (AVELF), which will
help to analyze the influence of the degree of fractionalization
in society and culture on economic productivity, typically found
to be negative. And finally, the fraction of Confucian population
in a country (CONFUC), used as a (somewhat dubious) proxy for
culture or religion, typically identified as having a positive effect on
growth. CONFUC can also be viewed as a proxy for the ‘Asian (baby)
tigers’: Hong Kong, Malaysia, Singapore, South Korea, and Taiwan.
However, as not all of the Asian countries with large growth rates
are Confucian, CONFUC is more than just a regional dummy.
Model 2 contains nine focus regressors and four auxiliary

regressors, and it represents an endogenous growth model trying
to identify more specifically the factors driving growth and
technological progress than is possible in Model 1. All regressors
of our first model are included in Model 2 as focus regressors,
except DPOP which is now an auxiliary regressor, because of
its ambiguous role in economic growth. This ambiguity and lack
of robustness was found, for example, by Sala-i-Martin (1997),
Fernández et al. (2001a), and Sala-i-Martin et al. (2004). Our results
reported in Section 5 confirm this ambiguity.
The three new auxiliary regressors are: the fraction of GDP

produced in mining (MINING), a structural variable supposed
to exert a negative effect on economic growth; an index for
political rights (PRIGHTS), serving as a second institutional variable
(the other is LAW), so that we capture not only the quality of
the legal framework in a country but also a notion of public
participation in the political process; and malaria prevalence in
1966 (MALARIA), another geographical variable (next to TROPICS),
so that we account not only for the geographical location of a
country, but also for its disease environment.
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Table 2
Estimates β̂ and standard errors (in parentheses), Model 1, Set-up 1.

Regressor Unrestricted Restricted GtS WALS BMA

Focus regressors
CONSTANT 0.0609 (0.0223) 0.0587 (0.0242) 0.0518 (0.0214) 0.0594 (0.0221) 0.0492 (0.0229)
GDP60 −0.0155 (0.0033) −0.0160 (0.0035) −0.0145 (0.0032) −0.0156 (0.0033) −0.0139 (0.0035)
EQUIPINV 0.1366 (0.0552) 0.2405 (0.0583) 0.1377 (0.0555) 0.1555 (0.0551) 0.1644 (0.0615)
SCHOOL60 0.0170 (0.0098) 0.0184 (0.0111) 0.0191 (0.0097) 0.0175 (0.0097) 0.0160 (0.0102)
LIFE60 0.0008 (0.0004) 0.0010 (0.0004) 0.0008 (0.0004) 0.0009 (0.0004) 0.0008 (0.0004)
DPOP 0.3466 (0.2503) −0.0341 (0.2611) 0.3275 (0.2513) 0.2651 (0.2487) 0.1654 (0.2770)
Auxiliary regressors
LAW 0.0174 (0.0066) – 0.0167 (0.0066) 0.0147 (0.0065) 0.0109 (0.0093)
TROPICS −0.0075 (0.0040) – −0.0083 (0.0039) −0.0055 (0.0037) −0.0035 (0.0047)
AVELF −0.0077 (0.0058) – – −0.0053 (0.0048) −0.0021 (0.0047)
CONFUC 0.0562 (0.0164) – 0.0596 (0.0163) 0.0443 (0.0163) 0.0612 (0.0185)
Table 3
Estimates β̂ and standard errors (in parentheses), Model 1, Set-up 2.

Regressor Unrestricted Restricted GtS WALS BMA

Focus regressor
CONSTANT 0.0609 (0.0223) 0.0199 (0.0022) 0.0344 (0.0146) 0.0560 (0.0215) 0.0488 (0.0218)
Auxiliary regressors
GDP60 −0.0155 (0.0033) – −0.0120 (0.0032) −0.0136 (0.0033) −0.0129 (0.0040)
EQUIPINV 0.1366 (0.0552) – 0.1951 (0.0524) 0.1037 (0.0537) 0.1539 (0.0797)
SCHOOL60 0.0170 (0.0098) – – 0.0125 (0.0094) 0.0084 (0.0127)
LIFE60 0.0008 (0.0004) – 0.0012 (0.0003) 0.0008 (0.0003) 0.0009 (0.0005)
DPOP 0.3466 (0.2503) – – 0.2236 (0.2156) 0.0261 (0.1252)
LAW 0.0174 (0.0066) – – 0.0137 (0.0063) 0.0090 (0.0092)
TROPICS −0.0075 (0.0040) – – −0.0055 (0.0039) −0.0021 (0.0038)
AVELF −0.0077 (0.0058) – – −0.0083 (0.0057) −0.0024 (0.0050)
CONFUC 0.0562 (0.0164) – 0.0728 (0.0167) 0.0451 (0.0163) 0.0663 (0.0180)
Table 4
Estimates β̂ and standard errors (in parentheses), Model 2, Set-up 1.

Regressor Unrestricted Restricted GtS WALS BMA

Focus regressors
CONSTANT 0.0931 (0.0264) 0.0768 (0.0193) 0.0930 (0.0198) 0.0879 (0.0246) 0.0862 (0.0239)
GDP60 −0.0173 (0.0033) −0.0156 (0.0033) −0.0166 (0.0032) −0.0167 (0.0033) −0.0164 (0.0033)
EQUIPINV 0.1324 (0.0579) 0.1479 (0.0550) 0.1448 (0.0531) 0.1379 (0.0562) 0.1423 (0.0553)
CONFUC 0.0538 (0.0169) 0.0585 (0.0165) 0.0522 (0.0161) 0.0550 (0.0167) 0.0550 (0.0169)
SCHOOL60 0.0144 (0.0096) 0.0183 (0.0098) 0.0151 (0.0096) 0.0156 (0.0096) 0.0162 (0.0099)
LIFE60 0.0006 (0.0004) 0.0006 (0.0003) 0.0005 (0.0003) 0.0006 (0.0003) 0.0006 (0.0003)
LAW 0.0200 (0.0068) 0.0145 (0.0063) 0.0183 (0.0063) 0.0183 (0.0066) 0.0171 (0.0067)
TROPICS −0.0055 (0.0041) −0.0055 (0.0037) −0.0029 (0.0037) −0.0053 (0.0040) −0.0044 (0.0041)
AVELF −0.0040 (0.0060) −0.0073 (0.0059) −0.0033 (0.0059) −0.0049 (0.0059) −0.0050 (0.0062)
Auxiliary regressors
MINING −0.0090 (0.0192) – – −0.0056 (0.0149) −0.0003 (0.0063)
DPOP 0.3352 (0.2542) – – 0.2147 (0.2178) 0.0650 (0.1705)
PRIGHTS −0.0013 (0.0012) – – −0.0008 (0.0010) −0.0002 (0.0007)
MALARIA −0.0104 (0.0052) – −0.0122 (0.0051) −0.0075 (0.0050) −0.0072 (0.0070)
Table 5
Estimates β̂ and standard errors (in parentheses), Model 2, Set-up 2.

Regressor Unrestricted Restricted GtS WALS BMA

Focus regressor
CONSTANT 0.0931 (0.0264) 0.0199 (0.0022) 0.0828 (0.0183) 0.0897 (0.0252) 0.0796 (0.0251)
Auxiliary regressors
GDP60 −0.0173 (0.0033) – −0.0163 (0.0032) −0.0156 (0.0033) −0.0151 (0.0039)
EQUIPINV 0.1324 (0.0579) – 0.1414 (0.0530) 0.0962 (0.0552) 0.1341 (0.0805)
CONFUC 0.0538 (0.0169) – 0.0558 (0.0160) 0.0397 (0.0161) 0.0562 (0.0197)
SCHOOL60 0.0144 (0.0096) – – 0.0098 (0.0088) 0.0079 (0.0115)
LIFE60 0.0006 (0.0004) – 0.0008 (0.0003) 0.0006 (0.0003) 0.0006 (0.0005)
LAW 0.0200 (0.0068) – 0.0177 (0.0062) 0.0177 (0.0065) 0.0169 (0.0095)
TROPICS −0.0055 (0.0041) – – −0.0048 (0.0039) −0.0006 (0.0021)
AVELF −0.0040 (0.0060) – – −0.0054 (0.0058) −0.0006 (0.0027)
MINING −0.0090 (0.0192) – – −0.0063 (0.0182) −0.0002 (0.0062)
DPOP 0.3352 (0.2542) – – 0.2146 (0.2175) 0.0179 (0.0990)
PRIGHTS −0.0013 (0.0012) – – −0.0012 (0.0010) −0.0002 (0.0006)
MALARIA −0.0104 (0.0052) – −0.0151 (0.0046) −0.0090 (0.0048) −0.0129 (0.0068)
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For each of Models 1 and 2, we estimate two versions: Set-up 1
as described above, and Set-up 2, where only the constant is a
focus variable and all other variables (nine in Model 1 and twelve
in Model 2) are auxiliary. Set-up 2 is the typical model averaging
framework and allows us to relate our results directly to previous
studies.

5. Estimation results

We thus have two models and for each model we have two
set-ups. We write the four models as 1(1), 1(2), 2(1), and 2(2),
respectively. For each of these four models we consider five
methods of estimation:

• Unrestricted: No model selection takes place. We estimate the
model with all focus and all auxiliary regressors by OLS.
• Restricted: No model selection. We estimate the model with all
focus regressors and none of the auxiliary regressors, also by
OLS.
• GtS: General-to-specific model (GtS) selection takes place over
the auxiliary regressors using Matlab’s stepwisefit routine. In
our version of GtS we start with the unrestricted model, then
‘go down’ (remove regressors), but never go ‘back up’ (add re-
gressors). The values of the controls (penter = 10−10 and
premove = 0.05) reflect this choice. The selected model thus
contains all focus regressors and a subset of the auxiliary re-
gressors. This selected model is then estimated by OLS without
pretesting taking into account. The reported OLS estimates and
standard errors are thus conditional on the model selected.
• WALS: Weighted-average least-squares estimation as dis-
cussed in Section 3.
• BMA: Bayesian model averaging as discussed in Section 2.

We note in passing that the estimates and standard errors
reported forWALS and BMA are not conditional on inclusion. Some
authors present the posterior moments conditional on inclusion
(Sala-i-Martin et al., 2004) or they present both conditional
and unconditional moments (Ley and Steel, 2007). While the
conditional moments certainly contain information of interest, the
unconditional moments are the ones that should be reported. To
see why, let us consider the simplest case yi = α+βxi+ εi, where
the constant term is a focus regressor and x is auxiliary, so that
there are twomodels to consider: onewhere β = 0 and onewhere
β is to be estimated. Suppose that x̄ = 0. Then the unrestricted
model gives β̂u =

∑
xiyi/

∑
x2i , while the restricted model gives

β̂r = 0. The estimator for β is a weighted average of these two:
β̂ = λβ̂u + (1− λ)β̂r = λβ̂u, where λ is determined by priors and
data. The estimator β̂u is the estimator conditional on inclusion,
and, while its moments contain information of interest, it will
overestimate the impact of x on y, which is correctly estimated
by the (unconditional) estimator β̂ . Hence, the unconditional
moments are the ones that should be reported.
The estimation results for the four models and five estimation

methods are given in Tables 2–5. All regressors have the same
signs across our estimationmethods,model specifications, and set-
ups with one exception, namely DPOP in the restricted estimation
method of Model 1(1), which has a negative sign rather then
the positive sign expected from neoclassical theory. We note that
the standard errors are very large for this parameter, and that
its sign (and its value) is therefore statistically not robust. In
fact, its standard error is by far the largest of all regressors in
all our estimations. The regressor PRIGHTS also enters with an
unexpected negative sign in all estimations of Model 2, and does
not seem to be a robust regressor either. This resembles the results
of Sala-i-Martin et al. (2004), and could be due to the fact that
most of the potentially beneficial effects of political stability on a
Table 6
Comparison of pip-values and t-ratios, Model 1.

Regressor Set-up 1 Set-up 2
WALS BMA WALS BMA
t pip t t pip t

CONSTANT 2.69 1.00 2.15 2.60 1.00 2.24
GDP60 −4.78 1.00 −3.96 −4.16 0.98 −3.21
EQUIPINV 2.82 1.00 2.67 1.93 0.88 1.93
SCHOOL60 1.80 1.00 1.58 1.33 0.14 0.66
LIFE60 2.44 1.00 2.32 2.34 0.40 1.82
DPOP 1.07 1.00 0.60 1.04 0.85 0.21
LAW 2.25 0.68 1.17 2.18 0.59 0.98
TROPICS −1.49 0.45 −0.75 −1.41 0.32 −0.55
AVELF −1.11 0.25 −0.44 −1.45 0.27 −0.48
CONFUC 2.72 0.99 3.31 2.77 0.99 3.69

country’s economic growth performance are already captured by
other variables in the estimation, most notably LAW.
The regressors GDP60, TROPICS, and AVELF in Models 1 and 2,

and the regressorsMINING andMALARIA inModel 2 are negatively
correlated with growth, which is reasonable, because a negative
effect of initial GDP reflects (conditional) convergence between
countries, and an unfavorable geographical location in the tropics
(highly correlated with high rates of malaria prevalence) or
a higher degree of fractionalization in a country are seen as
impediments to economic growth. This is also the case for large
endowments of natural resources which are usually associated
with more political instability, rent-seeking, and low growth. All
other regressors exhibit positive signs indicating that higher shares
of physical and human capital, stability in terms of a sufficient
rule of law, and a larger fraction of Confucian population foster
economic growth. Not only the signs, but also the sizes of the
estimates are closely correlated over the four models.
As the general-to-specific (GtS) model selection procedure is

commonly used in practice, closer investigation of the selected
models for 1(1), 1(2), 2(1), and 2(2) is appropriate. In Set-up 1 we
have four auxiliary regressors, both in Models 1(1) and 2(1). In
Model 1(1) the GtS procedure selects three of the four auxiliary
regressors, while in Model 2(1) only one is selected. One would
expect, perhaps, that in Model 1(1) the GtS estimates are close
to the unrestricted estimates, while in Model 2(1) they are close
to the restricted estimates. This, however, is not the case. In
Set-up 2 only the constant term is forced to be present in all
models, while model selection takes place over all other variables.
This is the procedure most commonly used. The GtS method
selects only four of the nine regressors in Model 1(2), and six
of the twelve regressors in Model 2(2). In Model 1(2), GtS drops
two of the Solow determinants, namely SCHOOL60, and DPOP.
This leads to a highly increased significance of the two other
Solow determinants EQUIPINV and LIFE60. Also, the fundamental
regressor CONFUC becomes much more important while the
effect of GDP60 diminishes statistically and economically. Similar
comments apply to Model 2(2). The statistical properties and
conclusions of GtSmust, however, be treatedwith caution, because
— unlike WALS and BMA — the reported moments are conditional
on the selected model, and the noise generated by the model
selection procedure is ignored. This is the so-called pretesting
problem, common to all classical model selection procedures.
Our main interest is in the comparison of the two averaging

methods: BMA and WALS. The estimated coefficients seem to
be somewhat higher (in absolute value) for WALS than for BMA
(with the exception of EQUIPINV and CONFUC), especially for
the auxiliary regressors, while the estimated standard errors are
about the same on average. The economic impact of all robust and
important regressors does not varymuch between BMA andWALS.
To shed some light on the relative importance of each regressor we
compute the posterior inclusion probability (pip) and the t-ratio
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Table 7
Comparison of BACE, BMA, and WALS, SDM data.

Regressor BACE BMA-u BMA-c WALS-F1 WALS-F8

01 East Asian dummy 0.0218 (0.0061) 0.0180 (0.0092) 0.0211 (0.0056) 0.0102 (0.0158) 0.0092 (0.0159)
02 Primary schooling 1960 (F ) 0.0269 (0.0080) 0.0242 (0.0116) 0.0278 (0.0075) 0.0205 (0.0167) 0.0293 (0.0175)
03 Investment price (F ) −0.0001 (0.0000) −0.0001 (0.0000) −0.0001 (0.0000) −0.0001 (0.0000) −0.0001 (0.0000)
04 GDP 1960 (log) (F ) −0.0085 (0.0029) −0.0065 (0.0041) −0.0083 (0.0026) −0.0067 (0.0075) −0.0093 (0.0077)
05 Fraction of tropical area (F ) −0.0148 (0.0042) −0.0101 (0.0079) −0.0153 (0.0037) −0.0097 (0.0156) −0.0123 (0.0158)
06 Population density coastal 1960’s 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
07 Malaria prevalence in 1960’s −0.0157 (0.0062) −0.0033 (0.0070) −0.0162 (0.0060) 0.0054 (0.0111) 0.0055 (0.0112)
08 Life expectancy in 1960 (F ) 0.0008 (0.0004) 0.0001 (0.0003) 0.0008 (0.0003) −0.0000 (0.0006) 0.0001 (0.0006)
09 Fraction Confucian (F ) 0.0544 (0.0224) 0.0088 (0.0218) 0.0545 (0.0212) 0.0241 (0.0372) 0.0470 (0.0387)
10 African dummy −0.0147 (0.0069) −0.0023 (0.0060) −0.0157 (0.0065) −0.0059 (0.0130) −0.0053 (0.0131)
11 Latin American dummy −0.0128 (0.0058) −0.0019 (0.0052) −0.0139 (0.0051) −0.0086 (0.0270) −0.0084 (0.0270)
12 Fraction GDP in mining 0.0388 (0.0193) 0.0040 (0.0133) 0.0394 (0.0191) 0.0342 (0.0408) 0.0356 (0.0411)
13 Spanish colony −0.0107 (0.0050) −0.0012 (0.0037) −0.0112 (0.0046) 0.0076 (0.0148) 0.0077 (0.0148)
14 Years open 0.0122 (0.0063) 0.0008 (0.0034) 0.0112 (0.0058) −0.0020 (0.0145) −0.0030 (0.0145)
15 Fraction Muslim 0.0126 (0.0063) 0.0010 (0.0039) 0.0125 (0.0060) 0.0073 (0.0132) 0.0077 (0.0132)
16 Fraction Buddhist 0.0217 (0.0107) 0.0018 (0.0065) 0.0208 (0.0100) 0.0157 (0.0258) 0.0149 (0.0256)
17 Ethnolinguistic fractionalization (F ) −0.0113 (0.0058) −0.0011 (0.0037) −0.0111 (0.0051) −0.0005 (0.0112) −0.0016 (0.0117)
18 Government consumption share 1960’s −0.0442 (0.0254) −0.0031 (0.0124) −0.0415 (0.0214) 0.5530 (0.7560) 0.5538 (0.7560)
19 Population density 1960 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
20 Real exchange rate distortions −0.0001 (0.0000) −0.0000 (0.0000) −0.0001 (0.0000) −0.0000 (0.0001) −0.0000 (0.0001)
21 Fraction speaking foreign language 0.0070 (0.0040) 0.0004 (0.0018) 0.0067 (0.0037) 0.0048 (0.0078) 0.0046 (0.0078)
22 (Imports+ Exports)/GDP 0.0089 (0.0052) 0.0005 (0.0023) 0.0090 (0.0049) 0.0002 (0.0165) 0.0003 (0.0164)
23 Political rights −0.0018 (0.0012) −0.0001 (0.0006) −0.0020 (0.0010) −0.0007 (0.0026) −0.0006 (0.0025)
24 Government share of GDP −0.0349 (0.0294) −0.0017 (0.0090) −0.0364 (0.0228) −0.5725 (0.7591) −0.5720 (0.7591)
25 Higher education in 1960 −0.0697 (0.0418) −0.0032 (0.0169) −0.0711 (0.0383) −0.0490 (0.0735) −0.0491 (0.0734)
26 Fraction population in tropics −0.0107 (0.0068) −0.0003 (0.0020) −0.0100 (0.0066) −0.0055 (0.0151) −0.0051 (0.0149)
27 Primary exports in 1970 −0.0113 (0.0075) −0.0003 (0.0023) −0.0113 (0.0074) −0.0041 (0.0145) −0.0042 (0.0143)
28 Public investment share −0.0615 (0.0430) −0.0029 (0.0161) −0.0699 (0.0405) −0.0746 (0.0578) −0.0738 (0.0571)
29 Fraction Protestant −0.0119 (0.0093) −0.0003 (0.0021) −0.0110 (0.0086) 0.0065 (0.0266) 0.0063 (0.0267)
30 Fraction Hindu 0.0176 (0.0126) 0.0004 (0.0030) 0.0163 (0.0117) 0.0061 (0.0276) 0.0059 (0.0273)
31 Fraction population less than 15 0.0450 (0.0411) 0.0012 (0.0094) 0.0462 (0.0345) 0.0578 (0.1177) 0.0579 (0.1177)
32 Air distance to big cities −0.0000 (0.0000) −0.0000 (0.0000) −0.0000 (0.0000) −0.0000 (0.0000) −0.0000 (0.0000)
33 Government consumption share deflated with
GDP prices

−0.0336 (0.0274) −0.0006 (0.0053) −0.0305 (0.0245) −0.0281 (0.0587) −0.0291 (0.0590)

34 Absolute latitude 0.0001 (0.0002) 0.0000 (0.0000) 0.0001 (0.0002) −0.0002 (0.0004) −0.0002 (0.0004)
35 Fraction Catholic −0.0084 (0.0085) −0.0001 (0.0012) −0.0070 (0.0082) 0.0003 (0.0230) −0.0001 (0.0230)
36 Fertility in 1960’s −0.0075 (0.0101) −0.0001 (0.0015) −0.0074 (0.0093) −0.0058 (0.0218) −0.0057 (0.0219)
37 European dummy −0.0023 (0.0105) −0.0000 (0.0011) −0.0008 (0.0093) 0.0080 (0.0307) 0.0091 (0.0309)
38 Outward orientation −0.0033 (0.0027) −0.0001 (0.0005) −0.0033 (0.0025) −0.0005 (0.0057) −0.0008 (0.0055)
39 Colony dummy −0.0050 (0.0047) −0.0001 (0.0007) −0.0044 (0.0041) −0.0039 (0.0113) −0.0031 (0.0112)
40 Civil liberties −0.0072 (0.0071) −0.0001 (0.0013) −0.0076 (0.0071) −0.0031 (0.0128) −0.0026 (0.0130)
41 Revolutions and coups −0.0071 (0.0061) −0.0001 (0.0011) −0.0069 (0.0056) −0.0107 (0.0128) −0.0104 (0.0128)
42 British colony 0.0037 (0.0036) 0.0000 (0.0005) 0.0030 (0.0032) 0.0023 (0.0067) 0.0028 (0.0067)
43 Hydrocarbon deposits in 1993 0.0003 (0.0004) 0.0000 (0.0001) 0.0003 (0.0004) 0.0002 (0.0006) 0.0001 (0.0007)
44 Fraction population over 65 0.0194 (0.1195) 0.0002 (0.0110) 0.0156 (0.1062) 0.1114 (0.2363) 0.1115 (0.2364)
45 Defense spending share 0.0453 (0.0768) 0.0005 (0.0082) 0.0509 (0.0626) 0.5604 (0.7434) 0.5600 (0.7434)
46 Population in 1960 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
47 Terms of trade growth in 1960’s 0.0326 (0.0467) 0.0004 (0.0058) 0.0358 (0.0447) −0.0011 (0.0986) −0.0015 (0.0983)
48 Public education spending/GDP in 1960’s 0.1295 (0.1728) 0.0012 (0.0193) 0.1254 (0.1534) 0.5967 (0.7749) 0.5968 (0.7749)
49 Landlocked country dummy −0.0021 (0.0042) −0.0000 (0.0005) −0.0029 (0.0036) −0.0009 (0.0074) −0.0006 (0.0073)
50 Religion measure −0.0047 (0.0072) −0.0001 (0.0009) −0.0060 (0.0064) 0.0007 (0.0118) 0.0010 (0.0118)
51 Size of economy −0.0005 (0.0014) −0.0000 (0.0001) −0.0004 (0.0013) −0.0025 (0.0047) −0.0021 (0.0047)
52 Socialist dummy 0.0040 (0.0050) 0.0000 (0.0006) 0.0039 (0.0047) −0.0013 (0.0087) −0.0011 (0.0087)
53 English-speaking population −0.0037 (0.0071) −0.0000 (0.0008) −0.0028 (0.0073) 0.0041 (0.0106) 0.0048 (0.0105)
54 Average inflation 1960–1990 −0.0001 (0.0001) −0.0000 (0.0000) −0.0001 (0.0001) 0.0001 (0.0004) 0.0001 (0.0004)
55 Oil-producing country dummy 0.0048 (0.0071) 0.0000 (0.0007) 0.0040 (0.0058) 0.0018 (0.0141) 0.0010 (0.0140)
56 Population growth rate 1960–1990 0.0208 (0.3078) 0.0002 (0.0243) 0.0257 (0.2634) −0.0664 (0.7732) −0.0664 (0.7732)
57 Timing of independence 0.0011 (0.0021) 0.0000 (0.0002) 0.0011 (0.0018) −0.0005 (0.0049) −0.0007 (0.0048)
58 Fraction land area near navigable water −0.0026 (0.0059) −0.0000 (0.0005) −0.0014 (0.0053) −0.0030 (0.0135) −0.0036 (0.0133)
59 Square of inflation 1960–1990 −0.0000 (0.0000) −0.0000 (0.0000) −0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
60 Fraction spent in war 1960–1990 −0.0014 (0.0092) −0.0000 (0.0007) −0.0008 (0.0083) 0.0015 (0.0195) 0.0021 (0.0194)
61 Land area 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
62 Tropical climate zone −0.0021 (0.0066) −0.0000 (0.0005) −0.0007 (0.0058) −0.0036 (0.0097) −0.0039 (0.0097)
63 Terms of trade ranking −0.0037 (0.0096) −0.0000 (0.0008) −0.0029 (0.0086) −0.0030 (0.0219) −0.0025 (0.0218)
64 Capitalism −0.0002 (0.0011) −0.0000 (0.0001) −0.0005 (0.0010) −0.0014 (0.0020) −0.0016 (0.0019)
65 Fraction Orthodox 0.0057 (0.0136) 0.0000 (0.0011) 0.0049 (0.0121) 0.0020 (0.0190) 0.0022 (0.0187)
66 War participation 1960–1990 −0.0007 (0.0030) −0.0000 (0.0002) −0.0004 (0.0027) −0.0009 (0.0050) −0.0006 (0.0049)
67 Interior density −0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
for each of the BMA estimates, and the t-ratio for each of theWALS
estimates (since pip cannot be computed forWALS) forModels 1(1)
and 1(2).
As a rough guideline for ‘robustness’ of a regressor, a value pip =

0.5 is sometimes recommended (Raftery, 1995), corresponding ap-
proximately with an absolute t-ratio of |t| = 1 (Masanjala and
Papageorgiou, 2008); see our discussion on ignorance in the Intro-
duction. We see from Table 6 that pip = 1 for each of the focus
regressors, because these regressors are in the model with proba-
bility one. The ordering of the four auxiliary regressors according
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to pip is the same as the ordering according to the t-ratios, both
for BMA and for WALS. For the six focus regressors the pip-values
are uninformative, and the correlation between the t-ratios of BMA
and WALS is very high. Similar remarks apply to Model 2.
We see that CONFUC is by far the most robust auxiliary regres-

sor with pip = 0.99 and a WALS t-ratio of 2.72 in Model 1(1).
LAW is the second important auxiliary regressor with pip = 0.68
and a WALS t-ratio of 2.25. In Model 1(2) the BMA estimates con-
firm the standard results that GDP60 (pip = 0.98) and EQUIPINV
(pip = 0.88) are the most important Solow determinants. Surpris-
ingly, also DPOP seems important (pip = 0.85). The order of im-
portance is essentially the same when we consider WALS t-ratios,
except that GDP60 (|t| = 4.16) has the highest t-ratio followed
by LIFE60 (|t| = 2.34), while EQUIPINV (|t| = 1.93) is only third.
Among the fundamental determinants we find again that CONFUC
and LAW are important variables, both in terms of pip and t-ratio.
The importance comparisons for Model 2 are similar. Among

the robust regressors we find GDP60 (pip = 0.99), CONFUC (pip =
0.97), LAW (pip = 0.85), EQUIPINV (pip = 0.83), and LIFE60
(pip = 0.72). Interestingly, MALARIA (pip = 0.87) is the third
most important regressor, reflecting the usually poor economic
performance of tropical countries and, jointly with life expectancy,
the large effects of health on economic outcomes. Again, the order
of the most robust regressors is essentially the same whether we
use BMA pip-values or WALS t-ratios.
Our model averaging results regarding the identification of the

important regressors are mostly in line with the literature for both
models and set-ups. We find some of the Solow or proximate
determinants not among the robust and important regressors,
notably the population growth rate, DPOP, and primary schooling,
SCHOOL60, which is in line with other studies; see Fernández
et al. (2001a), Sala-i-Martin et al. (2004), Eicher et al. (2007b), and
Durlauf et al. (2008b). The fundamental determinant (theory) of
fractionalization, AVELF, is not robust either, a finding confirmed
by other model averaging studies (Fernández et al., 2001a; Sala-i-
Martin et al., 2004; Durlauf et al., 2008b).
The recent study by Durlauf et al. (2008b) addresses the issue

of theory robustness versus variable robustness in a two-stage
least-squares BMA frameworkwith hierarchical priors. They donot
find any of the fundamental theories geography, institutions, or
religion to be robustly and directly correlated with growth, and
they conjecture an indirect effect from institutions and religion
on growth via proximate determinants. Religion is not robust as
a theory, they claim, because, if dummies allowing for regional
heterogeneity are included in the regression, the pip-value of
religion drops sharply. Similarly, institutions are not robust as a
theory, because only in estimations where solely the fundamental
theories are present, institutions have a high pip-value.
While our results regarding religion and geography support the

findings of Durlauf et al. (2008b), this is not the case regarding
institutions. Our results provide evidence for a robust direct impact
of institutions on economic growth. Themagnitude and robustness
of our institutions variable, LAW, is for both models larger in
Set-up 1 (which distinguishes between types of determinants or
‘theories’) than in Set-up 2 (which does not). This is especially
interesting for Model 1 where LAW is ‘only’ included in the set
of auxiliary regressors but nevertheless exerts a direct influence.
Since the effect of institutions on growth is of obvious importance,
we investigated this issue a little further. We added the same
regional dummies and macroeconomic variables as in Durlauf
et al. (2008b), and found that our institutions variable, LAW, is
unaffected by these changes, irrespective whether we add the new
variables to the set of focus regressors or to the set of auxiliary
regressors. The pip-value is always larger than 0.9 and the absolute
t-ratio always larger than 2.0. If anything, the inclusion of the
additional variables strengthens the effect of LAW on growth.
Table 8
Comparison of absolute t-ratios, SDM data.

Regressor BACE BMA-u BMA-c WALS-F1 WALS-F8

02 SCHOOL60 (F ) 3.37 2.08 3.71 1.23 1.67
03 IPRICE (F ) 3.36 1.99 3.62 2.21 2.47
04 GDP60 (F ) 2.96 1.58 3.17 0.90 1.21
05 TROPICS (F ) 3.49 1.29 4.12 0.62 0.78
07 MALARIA 2.54 0.46 2.70 0.48 0.50
08 LIFE60 (F ) 2.28 0.40 2.30 0.06 0.12
09 CONFUC (F ) 2.43 0.40 2.57 0.65 1.22
12 MINING 2.02 0.30 2.06 0.84 0.87
17 AVELF (F ) 1.93 0.30 2.15 0.04 0.14
23 PRIGHTS 1.54 0.24 1.94 0.27 0.25
56 DPOP 0.07 0.01 0.10 0.09 0.09

6. WALS estimation of the full SDM data set

To gain further insight we also consider a much larger data set,
namely the data analyzed by Sala-i-Martin et al. (2004), henceforth
SDM. The SDM data set contains 88 countries and 68 regressors
(67 explanatory variables plus the constant term). Estimates are
presented in SDM (Table 2) using the so-called Bayesian averaging
of classical estimates (BACE) approach. The SDM data have also
been analyzed by Ley and Steel (2007).5 The data used by Ley and
Steel are the same as SDM except that the dependent variable has
been multiplied by 100. Hence all estimates and standard errors
must be divided by 100 to obtain comparable results.
To compare the results obtained by SDM and Ley and Steel

(2007) with our approach, we estimate two versions. In WALS-F1
there is only one focus regressor (the constant term) so that model
selection takes place over 67 variables, as in SDM and Ley and Steel
(2007). This corresponds to Set-up 2 of the application in Sections 4
and 5. In WALS-F8 we select eight focus regressors (including the
constant term), corresponding to Set-up 1 in Sections 4 and 5. We
select the focus regressors in such a way that they resemble our
focus regressors in Model 2.6 The selected focus regressors are
marked (F ) in Tables 7 and 8. In both versions computing time is
negligible.
Table 7 gives the posterior means and standard errors resulting

from three estimation methods using the full SDM data set:
BACE, BMA, and WALS. As in SDM we present the posterior
moments for BACE only conditional on inclusion, and, as in Ley
and Steel (2007), we present both the unconditional and the
conditional posterior moments for BMA, labeled BMA-u and BMA-
c , respectively. The estimates and standard errors reported for
WALS are not conditional on inclusion.
We first comment briefly on the signs and the magnitudes of

the estimated coefficients over the different methods.
Regarding the signs of the estimated coefficients we see from

Table 7 that there are no sign changes between BMA-u and BMA-
c, and that there is only one sign change (variable 67) between
BACE and BMA. Hence these three columns are almost perfectly
correlated in terms of signs.
WALS-F1 and WALS-F8 are also highly correlated in terms of

signs: there are only two sign changes (variables 08 and 35)

5 Ley and Steel (2007) present standardized results, but the nonstandardized
results (which we need here) can be easily computed or downloaded from Mark
Steel’s website: http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/steel/
steel_homepage/bma by clicking on the link ‘Supplementary Material with Data
and Fortran Code’ associated with Ley and Steel (2007), and extracting the file
k67i9_NStd.out. The results are in the tablewith heading ‘Betas: PosteriorMoments
(Unconditional and Conditional on Inclusion).’
6 Instead of EQUIPINV, SDM employ IPRICE as the variable for domestic
investment: the average investment price level between 1960 and 1994 on
purchasing power parity basis. Source: Heston et al. (2001). A variable proxying
for the rule of law is not included in the SDM data.
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between these two columns. However, BACE/BMA and WALS are
less correlated: about 70–75%of theWALS estimates have the same
sign as the corresponding BACE/BMA estimates.
It seems that the signs produced by WALS are more intuitive

than those produced by BACE/BMA. For example, WALS finds posi-
tive correlation between being an European economy (variable 37)
and growth, while BACE and BMA find negative correlation. Also,
WALS finds that being under socialist rule (variable 52) has a neg-
ative impact on growth, while BACE and BMA report positive cor-
relation.
We see that WALS-F1 differs twice from WALS-F8 in terms of

sign, and in both cases the sign of WALS-F8 is more intuitive: a
positive impact of life expectancy (variable 08) on growth and a
negative impact of the fraction of Catholics (variable 35). Thus, the
structure provided by distinguishing between focus and auxiliary
regressors seems to help also in finding ‘correct’ signs.
Regarding the magnitudes of the estimated coefficients we see

from Table 7 that the WALS estimates of the robust and important
estimates are mostly in line with BACE and BMA, and with the
literature in general. This is true for both versions of WALS, and
it is also true for the identification of the important regressors.
Table 7 shows that the WALS estimates are somewhat higher

(in absolute value) than the BMA and BACE estimates, especially
the BMA-u estimates. This confirms and strengthens the results
of Section 5. In addition, the estimated standard errors are much
larger forWALS than for BACE and BMA,which demonstrates again
the danger of using the conditional estimates: the standard errors
are seriously underestimated.
In order to emphasize the last point, we consider — in addition

to the signs andmagnitudes of the estimates— also their estimated
precisions. Thus we present in Table 8 the absolute t-ratios for a
subset of eleven regressors of particular interest.7We shall denote
the t-ratio by tc if it is calculated conditional on inclusion, and
by tu if it is not. Comparing the absolute t-ratios, we see that
on average |tc | = 2.36 (BACE) and |tc | = 2.59 (BMA-c) for
the conditional estimates, and |tu| = 0.67 (WALS-F1), |tu| =
0.85 (WALS-F8), and |tu| = 0.82 (BMA-u) for the unconditional
estimates. In the case of Table 8 the tc-ratios are more than three
times as large (on average, absolute values) as the tu-ratios. If we
consider all 67 regressors (without the constant term), then the
average t-ratios (in absolute value) are uniformly lower: |tc | =
1.33 (BACE) and |tc | = 1.41 (BMA-c) for the conditional estimates,
and |tu| = 0.41 (WALS-F1), |tu| = 0.44 (WALS-F8) and |tu| =
0.27 (BMA-u) for the unconditional estimates, but the tc-ratios are
now almost four times as large (on average, absolute values) as
the tu-ratios.8 This clearly demonstrates that conditional methods
producemuchmore precise estimates thanunconditionalmethods
(such as WALS). However, this high precision is misleading and
incorrect. It appears that theWALS estimates are in-between BMA-
c and BMA-u in terms of precision.
We note from Table 8 that WALS-F8 gives higher precisions

than WALS-F1 as one would expect, because it is based on more
restrictions. This confirms the findings in Table 6 for the much
smaller data set. It appears therefore that the more structured
framework in WALS-F8, allowing for a distinction between focus
and auxiliary regressors, also helps to better identify the most
robust and important determinants (theories) of economic growth.
The previous analysis shows three things. First, the difference

between WALS and BMA-u is not large. Second, the difference

7 The t-ratios are calculated from the original output using more than four
decimal points, and not from Table 7.
8 The average absolute t-ratio for BACE is calculated over 65 rather than 67
variables, because two of the estimates have a standard error of zero up to all
decimal points available to us.
between conditional and unconditional estimates is very large, and
the use of the conditional estimates gives unrealistically precise
estimates. Given that SDM use only uniform priors in BACE, their
high precisions (with a small data set and a large number of
regressors) seem astonishing. As argued, the reason lies in the use
of conditional instead of unconditional estimates. Third, the WALS
results are mostly in line with the SDM and BMA results (certainly
with the BMA-u results, which are the more relevant) regarding
the identification of the most robust and important determinants
of economic growth. TheWALS estimates have similar magnitudes
and directions of influence, and where they differ it appears that
the WALS estimates are often more intuitive. This shows that the
WALS method can also be useful for very large data sets.
Given that WALS not only provides the posterior moments

in negligible computing time, but also does this based on exact
calculations without using an approximation algorithm (contrary
to BACE and BMA), we believe that WALS is a suitable model
averaging technique also (and in particular) for large data sets.

7. Conclusions

The presently availablemyriad of growth determinants exposes
growth regressions to a high degree of model uncertainty.
Solow’s (1956) neoclassical growth model provides an important
benchmark, but numerous other growth models have been
proposed and estimated since 1956. Since estimates and policy
recommendations based on a model without taking the model
selection procedure explicitly into account can be seriously biased
and are likely to underestimate the variance, it is important
to develop estimation techniques that take model uncertainty
explicitly into account in an integrated one-step procedure. BMA is
one such procedure, and so is WALS. Rather than trying to find the
best possible model (step one) and — conditional on the selected
model — the best possible estimates (step two), it is usually more
relevant to find the best possible estimates taking account of all
information provided by all models (one step).
At present, BMA is a standard method in growth econometrics;

it is flexible with respect to the size and exact specification
of a model, and it does not require the a priori selection of
any model. In this paper we confront BMA with WALS, a new
method previously not used for (growth) estimations. WALS has
a theoretical advantage over BMA in that it presents an explicit
and transparent treatment of ignorance, and a practical advantage
in that the required computing time is linear in the number of
regressors rather than exponential.
We apply these two model averaging techniques taking

different types of growth determinants (theories) into account.We
define two sets of regressors: focus regressors which we want in
themodel on theoretical or other grounds, and auxiliary regressors
which contain additional explanatory variables of which we are
less certain. The distinction between focus and auxiliary regressors
is helpful when one wants to understand the relationship between
neoclassical and other new growth determinants. While the Solow
variables appear in many empirical studies, thus serving as a
baseline for growth analysis, it is not so clear which variables
should be included as auxiliary regressors.
Based on this framework we analyze two different model

specifications, labeled Model 1 and Model 2. In the notion of
Durlauf et al. (2008b), we interpret Model 1 as a direct test of
the proximate neoclassical growth theory against the fundamental
new growth theories of institutions, geography, fractionalization,
and religion. Model 2 deviates from the proximate versus
fundamental classification, and tests the robustness of the
endogenous growthmodel using the distinction between focus and
auxiliary regressors.
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We also consider a much larger data set, namely the data
analyzed by Sala-i-Martin et al. (2004). To compare their results
and the estimates of Ley and Steel (2007) (using the same data)
with our WALS approach we estimate two versions. In WALS-
F1 model selection takes place over all 67 variables, as in SDM
and Ley and Steel (2007). In contrast, WALS-F8 selects eight focus
regressors that resemble our focus regressors in Model 2. Both
versions of WALS produce results in line with the other methods,
while the computing time is negligible.
Our model averaging results regarding the magnitude of the

robust and important estimates are mostly in line with the
literature for both models and set-ups, and this is also true for
the identification of the important regressors. Our results do,
however, shed new light on the robustness of growth determinants
and theories. In particular, we find that robust growth theories
should include not only neoclassical growth variables but also
institutions; and also that the choice of variables within the theory
of institutions matters. Both findings are in contrast to the recent
study by Durlauf et al. (2008b) which addresses the issue of theory
robustness versus variable robustness.
The search for a robust growth theory continues to be a delicate

venture. It seems advisable to address the robustness and the
interplay of different types, such as proximate versus fundamental,
at the level of growth regressors rather than at the level of growth
theories, since model averaging procedures can produce quite
different results with respect to the robustness of growth theories
depending on the specific variables used to proxy them.
From an econometric theory point of view we conclude that

WALS should be considered as a serious new model averaging
technique, both theoretically and computationally. Simulation
studies will need to provide further insights; see Magnus et al.
(2009). A major advantage of WALS is that it is based on
a transparent treatment of ignorance, while BMA will always
depend on subjective (and possibly sensitive) choices of the
hyperparameters, such as the specification of gi in Section 2.4.
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Appendix

Our dependent variable (GROWTH) is the growth of per capita
GDP between 1960 and 1996. Note that we wish to explain the
growth rate in each country over a 37-year period, not the annual
growth rates. Our data constitute a cross section of 74 countries
worldwide, and for each country we require the observed growth
rate over the 37-year period and observations of the relevant
regressors. We confine ourselves to thirteen regressors, including
the constant term.
The data used in Sections 4 and 5 are taken from the

standard literature on growth regressions. Our primary source
is the SDM data set (Sala-i-Martin et al., 2004) for 1960–1996,
available on Gernot Doppelhofer’s website: http://www.econ.
cam.ac.uk/faculty/doppelhofer/research/bace.htm. There are only
two variables where we deviate from the SDM data, namely
the equipment investment variable (EQUIPINV), which replaces
another investment variable in SDM, and the rule of law index
(LAW), which is not in the SDM data. Both variables are taken from
Sala-i-Martin (1997) (henceforth SALA).
The SDM data set is based on a list of 139 countries. Since many

of the regressors are not observed in each country, they selected 88
countries for their analysis. The SALA data set lists 134 countries
(withmanymissing observations). The intersection of the two sets
and our selected variables contains 74 countries, as follows:
Africa (18): Algeria, Botswana, Cameroon, Congo, Ethiopia, Ghana,
Kenya, Madagascar, Malawi, Morocco, Nigeria, Senegal, Somalia,
Tunisia, Uganda, Zaire, Zambia, Zimbabwe;
Latin America & Caribbean (21): Argentina, Bolivia, Brazil, Chile,
Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador,
Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama,
Paraguay, Peru, Trinidad and Tobago, Uruguay, Venezuela;
North America (2): Canada, United States;
Asia (14): Bangladesh, Hong Kong, India, Israel, Japan, Jordan,
Korea, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka,
Taiwan, Thailand;
Europe (17): Austria, Belgium, Denmark, Finland, France, West
Germany, Greece, Ireland, Italy, The Netherlands, Norway, Portu-
gal, Spain, Sweden, Switzerland, Turkey, United Kingdom;
Oceania (2): Australia, Papua New Guinea.

The dependent variable is:
GROWTH: Growth of GDP per capita at purchasing power parity
between 1960 and 1996 (base year 1996); calculated by Heston
et al. (2001). Source: SDM.

Apart from the constant term, there are twelve regressors, briefly
described as follows:
GDP60: Logarithm of GDP per capita in 1960; calculated by Heston
et al. (2001). Source: SDM.
EQUIPINV: 1960–1985 real equipment investment share of GDP
comprising producer’s investments in electrical and nonelectrical
machinery (measured in relative prices constant across countries);
calculated by De Long and Summers (1991). Source: SALA.
SCHOOL60: Total gross enrollment ratio for primary education
in 1960. Calculated by Barro and Lee (1993) from UNESCO data.
Source: SDM.
LIFE60: Life Expectancy at age 0 in 1960. Calculated by Barro and
Lee (1993) from World Development Reports, World Bank, and
other national data sets. Source: SDM.
DPOP: Average growth rate of population between 1960 and 1990.
Calculated by Barro and Lee (1993) fromWorld Bank data. Source:
SDM.
LAW: Index for the overall maintenance of the rule of law (also
referred to as ‘law and order tradition’). Calculated by Knack and
Keefer (1995) from the International Country Risk Guide. Source:
SALA.
TROPICS: Proportion of a country’s land area within geographical
tropics. Calculated by Gallup et al. (2001) from Arc World
Supplement Database. Source: SDM.
AVELF: Average of five different indices of ethnolinguistic
fragmentation which is the probability of two random people
in a country not coming from the same ethnolinguistic group;
calculated by Easterly and Levine (1997). Source: SDM.
CONFUC: Fraction of Confucian population in 1970 and 1980.
Calculated by Barro (1999) from World Christian Encyclopedia.
Source: SDM.
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MINING: Fraction of GDP produced in the Mining and Quarrying
sector (including oil and gas; data are for the year 1988 when
possible, or the closest available year); calculated by Hall and Jones
(1999). Source: SDM.
PRIGHTS: Index of political rights comprising rights to vote,
compete for public offices and for elected representatives to have
a decisive vote on public policies (from 1 to 7; 1 = most rights).
Calculated by Barro and Lee (1993) from GASTIL. Source: SDM.
MALARIA: Index of malaria prevalence in 1966, which is the
product of the fraction of land area subject to malaria times the
fraction of falciparum malaria cases. Calculated by Gallup et al.
(2001) fromWorld Health Organization data. Source: SDM.

All data used in this study can be downloaded from the project’s
website mentioned at the end of Section 2.

References

Barro, R., 1991. Economic growth in a cross section of countries. Quarterly Journal
of Economics 106, 407–433.

Barro, R., 1999. Determinants of democracy. Journal of Political Economy 107,
S158–S183.

Barro, R., Lee, J., 1993. International comparisons of educational attainment. Journal
of Monetary Economics 32, 363–394.

Bauwens, L., Lubrano, M., Richard, J.-F., 1999. Bayesian Inference in Dynamic
Econometric Models. Oxford University Press, Oxford.

Brock, W., Durlauf, S.N., 2001. Growth empirics and reality. World Bank Economic
Review 15, 229–272.

Claeskens, G., Hjort, N.L., 2003. The focused information criterion. Journal of the
American Statistical Association 98, 900–916.

Crespo-Cuaresma, J., Doppelhofer, G., 2007. Nonlinearities in cross-country growth
regressions: A Bayesian averaging of thresholds (BAT) approach. Journal of
Macroeconomics 29, 541–554.

Danilov, D., 2005. Estimation of the mean of a univariate normal distribution when
the variance is not known. Econometrics Journal 8, 277–291.

Danilov, D., Magnus, J.R., 2004. On the harm that ignoring pretesting can cause.
Journal of Econometrics 122, 27–46.

De Long, J., Summers, L., 1991. Equipment investment and economic growth.
Quarterly Journal of Economics 106, 445–502.

Draper, D., 1995. Assessment and propagation of model uncertainty. Journal of the
Royal Statistical Society (Series B) 57, 45–97.

Doppelhofer, G., Weeks, M., 2008. Robust model averaging. Paper presented at the
CESifo Area Conference on Macro, Money and International Finance, 14–15
March 2008, Munich.

Durlauf, S.N., Johnson, P.A., Temple, J.R.W., 2005. Growth econometrics.
In: Aghion, P., Durlauf, S.N. (Eds.), Handbook of Economic Growth. North
Holland, Amsterdam, pp. 555–677.

Durlauf, S.N., Kourtellos, A., Tan, C.M., 2008a. Empirics of growth and development.
In: Dutt, A.K., Ros, J. (Eds.), International Handbook of Development Economics,
Vol. 1. Edward Elgar, Cheltenham, UK (forthcoming).

Durlauf, S.N., Kourtellos, A., Tan, C.M., 2008b. Are any growth theories robust?
Economic Journal 118, 329–346.

Easterly, W., Levine, R., 1997. Africa’s growth tragedy: Policies and ethnic divisions.
Quarterly Journal of Economics 112, 1203–1250.

Eicher, T., Henn, C., Papageorgiou, C., 2007a. Trade creation and diversion revisited:
Accounting for model uncertainty and natural trading partner effects. UWEC
2007-18, University of Washington.

Eicher, T., Papageorgiou, C., Raftery, A.E., 2007b. Determining growth determinants:
Default priors and predictive performance in Bayesian model averaging. UWEC
2007-25, University of Washington.

Eicher, T., Papageorgiou, C., Roehn, O., 2007c. Unraveling the fortunes of the
fortunate: An iterative Bayesian model averaging (IBMA) approach. Journal of
Macroeconomics 29, 494–514.

Fernández, C., Ley, E., Steel, M.F.J., 2001a. Model uncertainty in cross-country
growth regressions. Journal of Applied Econometrics 16, 563–576.

Fernández, C., Ley, E., Steel, M.F.J., 2001b. Benchmarks priors for Bayesian model
averaging. Journal of Econometrics 100, 381–427.

Gallup, J., Mellinger, A., Sachs, J., 2001. Geography Datasets. Center for International
Development at Harvard University (CID). Data website: http://www2.cid.
harvard.edu/ciddata/geographydata.htm.
Hall, R.E., Jones, C.I., 1999. Why do some countries produce so much more output
per worker than others? Quarterly Journal of Economics 114, 83–116.

Hansen, B.E., 2007. Least squares model averaging. Econometrica 75, 1175–1189.
Heston, A., Summers, R., Aten, B., 2001. Penn World Table version 6.0. Center
for International Comparisons at the University of Pennsylvania (CICUP). Data
website: http://pwt.econ.upenn.edu.

Hjort, N.L., Claeskens, G., 2003. Frequentist model average estimators. Journal of the
American Statistical Association 98, 879–899.

Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian model
averaging: A tutorial (with discussion). Statistical Science 14, 382–417.

Knack, S., Keefer, P., 1995. Institutions and economic performance: Cross-country
tests using alternative institutional measures. Economics and Politics VII
207–227.

Kormendi, R., Meguire, P., 1985. Macroeconomic determinants of growth: Cross-
country evidence. Journal of Monetary Economics 16, 141–163.

Leamer, E.E., 1978. Specification Searches: Ad Hoc Inference with Nonexperimental
Data. Wiley, New York.

Leamer, E.E., 1985. Sensitivity analyses would help. American Economic Review 75,
308–313.

León-González, R., Montolio, D., 2004. Growth, convergence and public investment.
A Bayesian model averaging approach. Applied Economics 36, 1925–1936.

Levine, R., Renelt, D., 1992. A sensitivity analysis of cross-country growth
regressions. American Economic Review 82, 942–963.

Ley, E., Steel, M.F.J., 2007. Jointness in Bayesian variable selection with applications
to growth regression. Journal of Macroeconomics 29, 476–493.

Ley, E., Steel, M.F.J., 2009. On the effect of prior assumptions in Bayesian
model averaging with applications to growth regression. Journal of Applied
Econometrics, forthcoming.

Liang, H., Zou, G., Wan, A.T.K., Zhang, X., 2008. On optimal least squares modeling
averaging. University of Rochester. Mimeo.

Magnus, J.R., 1999. The traditional pretest estimator. Theory of Probability and Its
Applications 44, 293–308.

Magnus, J.R., 2002. Estimation of the mean of a univariate normal distribution with
known variance. Econometrics Journal 5, 225–236.

Magnus, J.R., Durbin, J., 1999. Estimation of regression coefficients of interest when
other regression coefficients are of no interest. Econometrica 67, 639–643.

Magnus, J.R., Wan, A.T.K., Zhang, X., 2009. WALS estimation with nonspherical
disturbances and an application to the Hong Kong housing market. Tilburg
University, Mimeo.

Mankiw, N.G., Romer, D., Weil, D.N., 1992. A contribution to the empirics of
economic growth. Quarterly Journal of Economics 107, 407–437.

Masanjala, W., Papageorgiou, C., 2007. Initial conditions, and post-war growth in
sub-Saharan Africa. Mimeo.

Masanjala, W., Papageorgiou, C., 2008. Rough and lonely road to prosperity:
A reexamination of the sources of growth in Africa using Bayesian model
averaging. Journal of Applied Econometrics 23, 671–682.

O’Hagan, A., 1994. Bayesian Inference. In: Kendall’s Advanced Theory of Statistics,
Vol. 2B. Edward Arnold, London.

Pericchi, L.R., Smith, A.F.M., 1992. Exact and approximate posterior moments for a
normal location parameter. Journal of the Royal Statistical Society (Series B) 54,
793–804.

Prüfer, P., Tondl, G., 2008. The FDI-growth nexus in Latin America: The role of source
countries and local conditions. Center DP 2008-61, Tilburg University.

Raftery, A.E., 1993. Bayesian model selection in structural equation models.
In: Bollen, K., Long, J. (Eds.), Testing Structural Equation Models. Newbury Park,
CA, Sage, pp. 163–180.

Raftery, A.E., 1995. Bayesian model selection in social research. Sociological
Methodology 25, 111–163.

Raftery, A.E., Madigan, D., Hoeting, J.A., 1997. Bayesian model averaging for linear
regression models. Journal of the American Statistical Association 92, 179–191.

Sala-i-Martin, X., 1997. I just ran two million regressions. American Economic
Review 87, 178–183.

Sala-i-Martin, X., Doppelhofer, G., Miller, R.I., 2004. Determinants of long-term
growth: A Bayesian averaging of classical estimates (BACE) approach. American
Economic Review 94, 813–835.

Solow, R.M., 1956. A contribution to the theory of economic growth. Quarterly
Journal of Economics 70, 65–94.

Tsangarides, C.G., Ghura, D., Leite, C.A., 2004. Is Growth Enough? Macroeconomic
Policy and Poverty Reduction. International Monetary Fund, Washington, DC.

Zellner, A., 1986. On assessing prior distributions and Bayesian regression analysis
with g-prior distributions. In: Goel, P.K., Zellner, A. (Eds.), Bayesian Inference
and Decision Techniques: Essays in Honor of Bruno de Finetti. North-Holland,
Amsterdam, pp. 233–243.

http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://www2.cid.harvard.edu/ciddata/geographydata.htm
http://pwt.econ.upenn.edu
http://pwt.econ.upenn.edu
http://pwt.econ.upenn.edu
http://pwt.econ.upenn.edu
http://pwt.econ.upenn.edu

	A comparison of two model averaging techniques with an application to growth empirics
	Introduction
	Bayesian model averaging (BMA)
	Prior, likelihood, and posterior in model  Mi 
	Marginal likelihood of model  Mi 
	Model averaging
	Implementation using  g -priors

	Weighted-average least squares (WALS)
	Orthogonalization
	Restricted least squares
	The equivalence theorem
	The Laplace estimator
	Implementation using Laplace priors
	BMA and WALS compared

	Growth models
	Estimation results
	WALS estimation of the full SDM data set
	Conclusions
	Acknowledgements
	Appendix
	References


